Koch Stefan P, Habermehl Christina, Mehnert Jan, Schmitz Christoph H, Holtze Susanne, Villringer Arno, Steinbrink Jens, Obrig Hellmuth
Berlin NeuroImaging Center, Charité Universitätsmedizin Berlin Berlin, Germany.
Front Neuroenergetics. 2010 Jun 14;2:12. doi: 10.3389/fnene.2010.00012. eCollection 2010.
Non-invasive optical imaging of brain function has been promoted in a number of fields in which functional magnetic resonance imaging (fMRI) is limited due to constraints induced by the scanning environment. Beyond physiological and psychological research, bedside monitoring and neurorehabilitation may be relevant clinical applications that are yet little explored. A major obstacle to advocate the tool in clinical research is insufficient spatial resolution. Based on a multi-distance high-density optical imaging setup, we here demonstrate a dramatic increase in sensitivity of the method. We show that optical imaging allows for the differentiation between activations of single finger representations in the primary somatosensory cortex (SI). Methodologically our findings confirm results in a pioneering study by Zeff et al. (2007) and extend them to the homuncular organization of SI. After performing a motor task, eight subjects underwent vibrotactile stimulation of the little finger and the thumb. We used a high-density diffuse-optical sensing array in conjunction with optical tomographic reconstruction. Optical imaging disclosed three discrete activation foci one for motor and two discrete foci for vibrotactile stimulation of the first and fifth finger, respectively. The results were co-registered to the individual anatomical brain anatomy (MRI) which confirmed the localization in the expected cortical gyri in four subjects. This advance in spatial resolution opens new perspectives to apply optical imaging in the research on plasticity notably in patients undergoing neurorehabilitation.
由于扫描环境带来的限制,功能磁共振成像(fMRI)在许多领域存在局限,而脑功能的无创光学成像在这些领域得到了推广。除了生理和心理学研究外,床边监测和神经康复可能是尚未得到充分探索的相关临床应用。在临床研究中推广该工具的一个主要障碍是空间分辨率不足。基于多距离高密度光学成像装置,我们在此证明了该方法的灵敏度有显著提高。我们表明,光学成像能够区分初级体感皮层(SI)中单个手指表征的激活情况。从方法学上讲,我们的研究结果证实了Zeff等人(2007年)的一项开创性研究结果,并将其扩展到SI的小人像组织。在执行一项运动任务后,八名受试者的小指和拇指接受了振动触觉刺激。我们使用了高密度漫射光学传感阵列并结合光学断层重建。光学成像揭示了三个离散的激活焦点,一个用于运动,另外两个离散焦点分别用于第一和第五手指的振动触觉刺激。结果与个体大脑解剖结构(MRI)进行了配准,这在四名受试者中证实了预期皮质回中的定位。空间分辨率的这一进展为在可塑性研究中应用光学成像开辟了新的前景,特别是在接受神经康复治疗的患者中。