Suppr超能文献

利用个性化因素对人工胰腺模糊逻辑控制器进行调整的临床应用建议。

Proposed clinical application for tuning fuzzy logic controller of artificial pancreas utilizing a personalization factor.

作者信息

Mauseth Richard, Wang Youqing, Dassau Eyal, Kircher Robert, Matheson Donald, Zisser Howard, Jovanovic Lois, Doyle Francis J

机构信息

Division of Pediatric Endocrinology, Department of Pediatrics, University of Washington, Seattle, Washington, USA.

出版信息

J Diabetes Sci Technol. 2010 Jul 1;4(4):913-22. doi: 10.1177/193229681000400422.

Abstract

BACKGROUND

Physicians tailor insulin dosing based on blood glucose goals, response to insulin, compliance, lifestyle, eating habits, daily schedule, and fear of and ability to detect hypoglycemia.

METHOD

We introduce a method that allows a physician to tune a fuzzy logic controller (FLC) artificial pancreas (AP) for a particular patient. It utilizes the physician's judgment and weighing of various factors. The personalization factor (PF) is a scaling of the dose produced by the FLC and is used to customize the dosing. The PF has discrete values of 1 through 5. The proposed method was developed using a database of results from 30 University of Virginia/Padova Metabolic Simulator in silico subjects (10 adults, 10 adolescents, and 10 children). Various meal sizes and timing were used to provide the physician information on which to base an initial dosing regimen and PF. Future decisions on dosing aggressiveness using the PF would be based on the patient's data at follow-up.

RESULTS

Three examples of a wide variation in diabetes situations are given to illustrate the physician's thought process when initially configuring the AP system for a specific patient.

CONCLUSIONS

Fuzzy logic controllers are developed by encoding human expertise into the design of the controller. The FLC methodology allows for the real-time scaling of doses without compromising the integrity of the dosing rules matrix. The use of the PF to individualize the AP system is enabled by the fuzzy logic development methodology.

摘要

背景

医生根据血糖目标、对胰岛素的反应、依从性、生活方式、饮食习惯、日常安排以及对低血糖的恐惧和检测能力来调整胰岛素剂量。

方法

我们介绍一种方法,该方法允许医生为特定患者调整模糊逻辑控制器(FLC)人工胰腺(AP)。它利用医生对各种因素的判断和权衡。个性化因子(PF)是FLC产生的剂量的缩放比例,用于定制给药剂量。PF具有1到5的离散值。所提出的方法是使用来自弗吉尼亚大学/帕多瓦代谢模拟器的30个虚拟受试者(10名成年人、10名青少年和10名儿童)的结果数据库开发的。使用了各种餐量和时间安排,为医生提供用于确定初始给药方案和PF的信息。未来使用PF进行给药积极性的决策将基于随访时患者的数据。

结果

给出了三个糖尿病情况差异很大的例子,以说明医生在为特定患者初始配置AP系统时的思维过程。

结论

模糊逻辑控制器是通过将人类专业知识编码到控制器设计中而开发的。FLC方法允许在不损害给药规则矩阵完整性的情况下实时缩放剂量。模糊逻辑开发方法使得能够使用PF对AP系统进行个性化设置。

相似文献

3
Multivariable adaptive closed-loop control of an artificial pancreas without meal and activity announcement.
Diabetes Technol Ther. 2013 May;15(5):386-400. doi: 10.1089/dia.2012.0283. Epub 2013 Apr 1.
4
Postprandial fuzzy adaptive strategy for a hybrid proportional derivative controller for the artificial pancreas.
Med Biol Eng Comput. 2018 Nov;56(11):1973-1986. doi: 10.1007/s11517-018-1832-1. Epub 2018 May 3.
5
Zone model predictive control: a strategy to minimize hyper- and hypoglycemic events.
J Diabetes Sci Technol. 2010 Jul 1;4(4):961-75. doi: 10.1177/193229681000400428.
6
A PI-fuzzy logic controller for the regulation of blood glucose level in diabetic patients.
J Med Eng Technol. 2006 Mar-Apr;30(2):83-92. doi: 10.1080/03091900500049528.
7
Use of a "fuzzy logic" controller in a closed-loop artificial pancreas.
Diabetes Technol Ther. 2013 Aug;15(8):628-33. doi: 10.1089/dia.2013.0036. Epub 2013 Jul 5.
10
Performance Analysis of Fuzzy-PID Controller for Blood Glucose Regulation in Type-1 Diabetic Patients.
J Med Syst. 2016 Dec;40(12):254. doi: 10.1007/s10916-016-0602-6. Epub 2016 Oct 6.

引用本文的文献

1
Early Stages of Automated Insulin Delivery.
J Diabetes Sci Technol. 2025 Jul;19(4):908-923. doi: 10.1177/19322968251335685. Epub 2025 Jul 1.
5
How can we reach the target of glucose control in type 1 diabetes?
J Diabetes. 2023 Jun;15(6):462-464. doi: 10.1111/1753-0407.13413. Epub 2023 May 22.
7
Healthcare Transformation in Singapore With Artificial Intelligence.
Front Digit Health. 2020 Nov 17;2:592121. doi: 10.3389/fdgth.2020.592121. eCollection 2020.
8
Multi-level Supervision and Modification of Artificial Pancreas Control System.
Comput Chem Eng. 2018 Apr 6;112:57-69. doi: 10.1016/j.compchemeng.2018.02.002. Epub 2018 Feb 10.
10
Artificial Intelligence for Diabetes Management and Decision Support: Literature Review.
J Med Internet Res. 2018 May 30;20(5):e10775. doi: 10.2196/10775.

本文引用的文献

1
Juvenile diabetes research foundation artificial pancreas consortium update.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1224-6. doi: 10.1177/193229680900300531.
3
In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes.
J Diabetes Sci Technol. 2009 Jan;3(1):44-55. doi: 10.1177/193229680900300106.
4
Symmetrization of the blood glucose measurement scale and its applications.
Diabetes Care. 1997 Nov;20(11):1655-8. doi: 10.2337/diacare.20.11.1655.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验