Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Magn Reson Med. 2010 Aug;64(2):418-29. doi: 10.1002/mrm.22407.
Diffusion-weighted MRI is an intrinsically low signal-to-noise ratio application due to the application of diffusion-weighting gradients and the consequent longer echo times. The signal-to-noise ratio worsens with increasing image resolution and diffusion imaging methods that use multiple and higher b-values. At low signal-to-noise ratios, standard magnitude reconstructed diffusion-weighted images are confounded by the existence of a rectified noise floor, producing poor estimates of diffusion metrics. Herein, we present a simple method of rectified noise floor suppression that involves phase correction of the real data. This approach was evaluated for diffusion-weighted imaging data, obtained from ethanol and water phantoms and the brain of a healthy volunteer. The parameter fits from monoexponential, biexponential, and stretched-exponential diffusion models were computed using phase-corrected real data and magnitude data. The results demonstrate that this newly developed simple approach of using phase-corrected real images acts to reduce or even suppress the confounding effects of a rectified noise floor, thereby producing more accurate estimates of diffusion parameters.
扩散加权磁共振成像是一种固有低信噪比的应用,这是由于扩散加权梯度的应用和随之而来的更长回波时间。信噪比随着图像分辨率的增加以及使用更多和更高 b 值的扩散成像方法而恶化。在低信噪比下,标准幅度重建的扩散加权图像受到校正噪声基底的存在的影响,从而导致扩散度量的估计不佳。在此,我们提出了一种简单的校正噪声基底抑制方法,涉及对真实数据进行相位校正。该方法针对乙醇和水体模以及健康志愿者大脑的扩散加权成像数据进行了评估。使用相位校正的真实数据和幅度数据计算了单指数、双指数和扩展指数扩散模型的参数拟合。结果表明,这种新开发的使用相位校正真实图像的简单方法可以减少甚至抑制校正噪声基底的干扰影响,从而更准确地估计扩散参数。