Suppr超能文献

采用原代软骨细胞对三维聚(1,8-辛二醇-柠檬酸酯)支架孔形状的机械和生化评估及其对体外软骨生成的渗透性影响。

Mechanical and biochemical assessments of three-dimensional poly(1,8-octanediol-co-citrate) scaffold pore shape and permeability effects on in vitro chondrogenesis using primary chondrocytes.

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2125, USA.

出版信息

Tissue Eng Part A. 2010 Dec;16(12):3759-68. doi: 10.1089/ten.TEA.2010.0103. Epub 2010 Sep 22.

Abstract

Poly(1,8-octanediol-co-citrate) (POC) is a biocompatible, biodegradable elastomer with potential application for soft tissue applications such as cartilage. For chondrogenesis, permeability is a scaffold design target that may influence cartilage regeneration. Scaffold permeability is determined by many factors such as pore shape, pore size, pore interconnectivity, porosity, and so on. Our focus in this study was to examine the effects of pore shape and permeability of two different POC scaffold designs on matrix production, mRNA gene expression, and differentiation of chondrocytes in vitro and the consequent mechanical property changes of the scaffold/tissue constructs. Since type I collagen gel was used as a cell carrier in the POC scaffolds, we also examined the effects of collagen gel concentration on chondrogenesis. We found that lower collagen I gel concentration provides a favorable microenvironment for chondrocytes promoting better chondrogenic performance of chondrocytes. With regard to scaffold design, low permeability with a spherical pore shape better enhanced the chondrogenic performance of chondrocytes in terms of matrix production, and mRNA gene expressions in vitro compared to the highly permeable scaffold with a cubical pore shape.

摘要

聚(1,8-辛二醇-co-柠檬酸酯)(POC)是一种生物相容性、可生物降解的弹性体,具有软骨等软组织应用的潜力。对于软骨生成,渗透性是支架设计的目标,可能会影响软骨再生。支架的渗透性取决于许多因素,如孔径形状、孔径大小、孔连通性、孔隙率等。我们在这项研究中的重点是研究两种不同 POC 支架设计的孔径形状和渗透性对体外软骨细胞基质产生、mRNA 基因表达和分化的影响,以及支架/组织构建的机械性能变化。由于 I 型胶原凝胶被用作 POC 支架中的细胞载体,我们还研究了胶原凝胶浓度对软骨生成的影响。我们发现,较低浓度的 I 型胶原凝胶为软骨细胞提供了有利的微环境,促进了软骨细胞更好的软骨生成性能。就支架设计而言,低渗透性的球形孔径比高渗透性的立方体形孔更好地增强了软骨细胞的软骨生成性能,表现在体外基质产生和 mRNA 基因表达方面。

相似文献

5
A new biodegradable polyester elastomer for cartilage tissue engineering.
J Biomed Mater Res A. 2006 May;77(2):331-9. doi: 10.1002/jbm.a.30607.
6
Differential effects of designed scaffold permeability on chondrogenesis by chondrocytes and bone marrow stromal cells.
Biomaterials. 2010 Jan;31(2):279-87. doi: 10.1016/j.biomaterials.2009.09.041. Epub 2009 Oct 8.
8
Fabricating poly(1,8-octanediol citrate) elastomer based fibrous mats via electrospinning for soft tissue engineering scaffold.
J Mater Sci Mater Med. 2017 Jun;28(6):93. doi: 10.1007/s10856-017-5906-7. Epub 2017 May 15.
9
Chondrogenesis of adipose stem cells in a porous polymer scaffold: influence of the pore size.
Cell Transplant. 2012;21(11):2397-405. doi: 10.3727/096368912X638865. Epub 2012 Apr 10.
10
Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
J Mater Sci Mater Med. 2019 Apr 29;30(5):53. doi: 10.1007/s10856-019-6257-3.

引用本文的文献

1
Citric Acid: A Nexus Between Cellular Mechanisms and Biomaterial Innovations.
Adv Mater. 2024 Aug;36(32):e2402871. doi: 10.1002/adma.202402871. Epub 2024 Jun 11.
3
Engineering multifunctional bioactive citrate-based biomaterials for tissue engineering.
Bioact Mater. 2022 May 7;19:511-537. doi: 10.1016/j.bioactmat.2022.04.027. eCollection 2023 Jan.
4
Innovative High-Pressure Fabrication Processes for Porous Biomaterials-A Review.
Bioengineering (Basel). 2021 Nov 1;8(11):170. doi: 10.3390/bioengineering8110170.
6
Fabricating poly(1,8-octanediol citrate) elastomer based fibrous mats via electrospinning for soft tissue engineering scaffold.
J Mater Sci Mater Med. 2017 Jun;28(6):93. doi: 10.1007/s10856-017-5906-7. Epub 2017 May 15.
9
Citrate-Based Biomaterials and Their Applications in Regenerative Engineering.
Annu Rev Mater Res. 2015 Jul;45:277-310. doi: 10.1146/annurev-matsci-070214-020815. Epub 2015 Mar 23.
10
Three-Dimensional Cell Entrapment as a Function of the Weight Percent of Peptide-Amphiphile Hydrogels.
Langmuir. 2015 Jun 9;31(22):6122-9. doi: 10.1021/acs.langmuir.5b00196. Epub 2015 May 26.

本文引用的文献

1
Scaffold design and manufacturing: from concept to clinic.
Adv Mater. 2009 Sep 4;21(32-33):3330-42. doi: 10.1002/adma.200802977.
4
6
Differential effects of designed scaffold permeability on chondrogenesis by chondrocytes and bone marrow stromal cells.
Biomaterials. 2010 Jan;31(2):279-87. doi: 10.1016/j.biomaterials.2009.09.041. Epub 2009 Oct 8.
7
Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation.
Acta Biomater. 2010 Mar;6(3):1149-57. doi: 10.1016/j.actbio.2009.09.006. Epub 2009 Sep 27.
8
Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering.
Acta Biomater. 2009 Feb;5(2):670-9. doi: 10.1016/j.actbio.2008.09.020. Epub 2008 Oct 10.
10
Non-invasive monitoring of tissue scaffold degradation using ultrasound elasticity imaging.
Acta Biomater. 2008 Jul;4(4):783-90. doi: 10.1016/j.actbio.2008.02.010. Epub 2008 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验