Suppr超能文献

用于软组织工程的 3D 设计聚(1,8-辛二醇-柠檬酸酯)支架的机械、渗透和降解性能。

Mechanical, permeability, and degradation properties of 3D designed poly(1,8 octanediol-co-citrate) scaffolds for soft tissue engineering.

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2125, USA.

出版信息

J Biomed Mater Res B Appl Biomater. 2010 Apr;93(1):141-9. doi: 10.1002/jbm.b.31568.

Abstract

Poly(1,8-octanediol-co-citric acid) (POC) is a synthetic biodegradable elastomer that can be processed into three-dimensional (3D) scaffolds for tissue engineering. We investigated the effect of designed porosity on the mechanical properties, permeability, and degradation profiles of the POC scaffolds. For mechanical properties, scaffold compressive data were fitted to a one-dimensional (1D) nonlinear elastic model, and solid tensile data were fitted to a Neohookean incompressible nonlinear elastic model. Chondrocytes were seeded on scaffolds to assess the biocompatibility of POC. Increased porosity was associated with increased degradation rate, increased permeability, and decreased mechanical stiffness, which also became less nonlinear. Scaffold characterization in this article will provide design guidance for POC scaffolds to meet the mechanical and biological parameters needed for engineering soft tissues such as cartilage.

摘要

聚(1,8-辛二醇-co-柠檬酸)(POC)是一种可生物降解的合成弹性体,可以加工成用于组织工程的三维(3D)支架。我们研究了设计的多孔性对 POC 支架的机械性能、渗透性和降解特性的影响。对于机械性能,支架压缩数据拟合到一维(1D)非线性弹性模型,而固体拉伸数据拟合到不可压缩的新胡克弹性非线性模型。将软骨细胞接种到支架上,以评估 POC 的生物相容性。随着多孔性的增加,降解速率增加,渗透性增加,机械硬度降低,非线性程度也降低。本文对支架的特性进行了描述,为 POC 支架的设计提供了指导,以满足软骨等软组织工程所需的机械和生物学参数。

相似文献

2
Fabricating poly(1,8-octanediol citrate) elastomer based fibrous mats via electrospinning for soft tissue engineering scaffold.
J Mater Sci Mater Med. 2017 Jun;28(6):93. doi: 10.1007/s10856-017-5906-7. Epub 2017 May 15.
5
A new biodegradable polyester elastomer for cartilage tissue engineering.
J Biomed Mater Res A. 2006 May;77(2):331-9. doi: 10.1002/jbm.a.30607.
8
Cell adhesion and mechanical properties of a flexible scaffold for cardiac tissue engineering.
Acta Biomater. 2007 Jul;3(4):457-62. doi: 10.1016/j.actbio.2006.12.006. Epub 2007 Feb 26.
9
Engineering Citric Acid-Based Porous Scaffolds for Bone Regeneration.
Methods Mol Biol. 2018;1758:1-10. doi: 10.1007/978-1-4939-7741-3_1.

引用本文的文献

1
Towards Greener Polymers: Poly(octamethylene itaconate--succinate) Synthesis Parameters.
Polymers (Basel). 2025 Aug 14;17(16):2220. doi: 10.3390/polym17162220.
2
3D-Printed Polymeric Biomaterials for Health Applications.
Adv Healthc Mater. 2025 Jan;14(1):e2402571. doi: 10.1002/adhm.202402571. Epub 2024 Nov 5.
3
Microstructural, Fluid Dynamic, and Mechanical Characterization of Zinc Oxide and Magnesium Chloride-Modified Hydrogel Scaffolds.
ACS Biomater Sci Eng. 2024 Aug 12;10(8):4791-4801. doi: 10.1021/acsbiomaterials.4c00286. Epub 2024 Jul 16.
5
Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds.
Prog Mater Sci. 2023 Oct;139. doi: 10.1016/j.pmatsci.2023.101173. Epub 2023 Jul 26.
10
Biodegradable Materials for Sustainable Health Monitoring Devices.
ACS Appl Bio Mater. 2021 Jan 18;4(1):163-194. doi: 10.1021/acsabm.0c01139. Epub 2020 Dec 23.

本文引用的文献

2
The use of scaffolds in the management of articular cartilage injury.
J Am Acad Orthop Surg. 2008 Jun;16(6):306-11. doi: 10.5435/00124635-200806000-00002.
3
Non-invasive monitoring of tissue scaffold degradation using ultrasound elasticity imaging.
Acta Biomater. 2008 Jul;4(4):783-90. doi: 10.1016/j.actbio.2008.02.010. Epub 2008 Feb 23.
7
Cell adhesion and mechanical properties of a flexible scaffold for cardiac tissue engineering.
Acta Biomater. 2007 Jul;3(4):457-62. doi: 10.1016/j.actbio.2006.12.006. Epub 2007 Feb 26.
10
Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering.
Biomaterials. 2006 Aug;27(24):4315-24. doi: 10.1016/j.biomaterials.2006.04.010. Epub 2006 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验