Suppr超能文献

嵌入上游基因中的促性腺激素释放激素转录增强子利用同源结构域蛋白来确定下丘脑的表达。

Enhancers of GnRH transcription embedded in an upstream gene use homeodomain proteins to specify hypothalamic expression.

作者信息

Iyer Anita K, Miller Nichol L G, Yip Kathleen, Tran Brian H, Mellon Pamela L

机构信息

Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093-0674, USA.

出版信息

Mol Endocrinol. 2010 Oct;24(10):1949-64. doi: 10.1210/me.2010-0156. Epub 2010 Jul 28.

Abstract

GnRH, the central regulator of reproductive function, is produced by only approximately 800 highly specialized hypothalamic neurons. Previous studies identified a minimal promoter [GnRH minimal promoter (GnRH-P)] (-173/+1) and a neuron-specific enhancer [GnRH-enhancer (E)1] (-1863/-1571) as regulatory regions in the rat gene that confer this stringent specificity of GnRH expression to differentiated GnRH neurons. In transgenic mice, these two elements target only GnRH neurons but fail to drive expression in the entire population, suggesting the existence of additional regulatory regions. Here, we define two novel, highly conserved, upstream enhancers in the GnRH gene termed GnRH-E2 (-3135/-2631) and GnRH-E3 (-4199/-3895) that increase neuron-specific GnRH expression through interactions with GnRH-E1 and GnRH-P. GnRH-E2 and GnRH-E3 regulate GnRH expression through similar mechanisms via Oct-1, Msx1, and Dlx2, which bind both GnRH-E2 and the GnRH-E3 critical region at -3952/-3895. Overexpression of Dlx2 increases transcription through GnRH-E2 and GnRH-E3. Remarkably, these novel elements are contained within the 3' untranslated region of the neighboring upstream gene, yet are marked endogenously by histone modification signatures consistent with those of enhancers. Thus, GnRH-E2 and GnRH-E3 are novel regulatory elements that, together with GnRH-E1 and GnRH-P, confer the specificity of GnRH expression to differentiated and mature GnRH neurons.

摘要

促性腺激素释放激素(GnRH)是生殖功能的中枢调节因子,仅由大约800个高度特化的下丘脑神经元产生。先前的研究确定了一个最小启动子[GnRH最小启动子(GnRH-P)](-173/+1)和一个神经元特异性增强子[GnRH增强子(E)1](-1863/-1571),它们是大鼠基因中的调控区域,赋予分化的GnRH神经元GnRH表达的这种严格特异性。在转基因小鼠中,这两个元件仅靶向GnRH神经元,但未能在整个群体中驱动表达,这表明存在其他调控区域。在这里,我们在GnRH基因中定义了两个新的、高度保守的上游增强子,称为GnRH-E2(-3135/-2631)和GnRH-E3(-4199/-3895),它们通过与GnRH-E1和GnRH-P相互作用来增加神经元特异性GnRH表达。GnRH-E2和GnRH-E3通过类似的机制,经由与GnRH-E2和GnRH-E3关键区域(-3952/-3895)结合的八聚体转录因子1(Oct-1)、肌肉骨骼X线相互作用蛋白1(Msx1)和远端缺失同源盒2(Dlx2)来调节GnRH表达。Dlx2的过表达通过GnRH-E2和GnRH-E3增加转录。值得注意的是,这些新元件包含在相邻上游基因的3'非翻译区内,但内源性地由与增强子一致的组蛋白修饰特征标记。因此,GnRH-E2和GnRH-E3是新的调控元件,它们与GnRH-E1和GnRH-P一起,赋予分化和成熟的GnRH神经元GnRH表达的特异性。

相似文献

1
Enhancers of GnRH transcription embedded in an upstream gene use homeodomain proteins to specify hypothalamic expression.
Mol Endocrinol. 2010 Oct;24(10):1949-64. doi: 10.1210/me.2010-0156. Epub 2010 Jul 28.
2
TALE homeodomain proteins regulate gonadotropin-releasing hormone gene expression independently and via interactions with Oct-1.
J Biol Chem. 2004 Jul 16;279(29):30287-97. doi: 10.1074/jbc.M402960200. Epub 2004 May 11.
5
The Otx2 homeoprotein regulates expression from the gonadotropin-releasing hormone proximal promoter.
Mol Endocrinol. 2000 Aug;14(8):1246-56. doi: 10.1210/mend.14.8.0509.
8
Developmental regulation of gonadotropin-releasing hormone gene expression by the MSX and DLX homeodomain protein families.
J Biol Chem. 2005 May 13;280(19):19156-65. doi: 10.1074/jbc.M502004200. Epub 2005 Mar 1.

引用本文的文献

1
In vitro modeling of cranial placode differentiation: Recent advances, challenges, and perspectives.
Dev Biol. 2024 Feb;506:20-30. doi: 10.1016/j.ydbio.2023.11.009. Epub 2023 Dec 3.
2
A multi-omics approach to visualize early neuronal differentiation from hESCs in 4D.
iScience. 2022 Oct 4;25(11):105279. doi: 10.1016/j.isci.2022.105279. eCollection 2022 Nov 18.
3
Lactate-Dependent Cross-Talk Between Astrocyte and GnRH-I Neurons in Hypothalamus of Aged Brain: Decreased GnRH-I Transcription.
Reprod Sci. 2022 Sep;29(9):2546-2564. doi: 10.1007/s43032-021-00814-w. Epub 2022 Feb 9.
5
Nasal Placode Development, GnRH Neuronal Migration and Kallmann Syndrome.
Front Cell Dev Biol. 2019 Jul 11;7:121. doi: 10.3389/fcell.2019.00121. eCollection 2019.
6
Differential CRE Expression in Lhrh-cre and GnRH-cre Alleles and the Impact on Fertility in Otx2-Flox Mice.
Neuroendocrinology. 2019;108(4):328-342. doi: 10.1159/000497791. Epub 2019 Feb 10.
7
Chromatin status and transcription factor binding to gonadotropin promoters in gonadotrope cell lines.
Reprod Biol Endocrinol. 2017 Oct 24;15(1):86. doi: 10.1186/s12958-017-0304-z.
9
Development of Gonadotropin-Releasing Hormone-Secreting Neurons from Human Pluripotent Stem Cells.
Stem Cell Reports. 2016 Aug 9;7(2):149-57. doi: 10.1016/j.stemcr.2016.06.007. Epub 2016 Jul 14.

本文引用的文献

1
Phenotypic robustness conferred by apparently redundant transcriptional enhancers.
Nature. 2010 Jul 22;466(7305):490-3. doi: 10.1038/nature09158. Epub 2010 May 30.
2
Discovery and annotation of functional chromatin signatures in the human genome.
PLoS Comput Biol. 2009 Nov;5(11):e1000566. doi: 10.1371/journal.pcbi.1000566. Epub 2009 Nov 13.
3
Predictive chromatin signatures in the mammalian genome.
Hum Mol Genet. 2009 Oct 15;18(R2):R195-201. doi: 10.1093/hmg/ddp409.
4
Otx2 induction of the gonadotropin-releasing hormone promoter is modulated by direct interactions with Grg co-repressors.
J Biol Chem. 2009 Jun 19;284(25):16966-16978. doi: 10.1074/jbc.M109.002485. Epub 2009 Apr 28.
5
Ensembl 2009.
Nucleic Acids Res. 2009 Jan;37(Database issue):D690-7. doi: 10.1093/nar/gkn828. Epub 2008 Nov 25.
6
Necdin, a Prader-Willi syndrome candidate gene, regulates gonadotropin-releasing hormone neurons during development.
Hum Mol Genet. 2009 Jan 15;18(2):248-60. doi: 10.1093/hmg/ddn344. Epub 2008 Oct 17.
7
Temporal and spatial regulation of CRE recombinase expression in gonadotrophin-releasing hormone neurones in the mouse.
J Neuroendocrinol. 2008 Jul;20(7):909-16. doi: 10.1111/j.1365-2826.2008.01746.x. Epub 2008 Apr 28.
8
Ultraconservation identifies a small subset of extremely constrained developmental enhancers.
Nat Genet. 2008 Feb;40(2):158-60. doi: 10.1038/ng.2007.55. Epub 2008 Jan 6.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验