Suppr超能文献

非核糖体肽中单体的多样性:走向起源和生物活性的预测。

Diversity of monomers in nonribosomal peptides: towards the prediction of origin and biological activity.

机构信息

ProBioGEM (UPRES EA 1026), Université Lille Nord de France, USTL, F59655 Villeneuve d'Ascq, France.

出版信息

J Bacteriol. 2010 Oct;192(19):5143-50. doi: 10.1128/JB.00315-10. Epub 2010 Aug 6.

Abstract

Nonribosomal peptides (NRPs) are molecules produced by microorganisms that have a broad spectrum of biological activities and pharmaceutical applications (e.g., antibiotic, immunomodulating, and antitumor activities). One particularity of the NRPs is the biodiversity of their monomers, extending far beyond the 20 proteogenic amino acid residues. Norine, a comprehensive database of NRPs, allowed us to review for the first time the main characteristics of the NRPs and especially their monomer biodiversity. Our analysis highlighted a significant similarity relationship between NRPs synthesized by bacteria and those isolated from metazoa, especially from sponges, supporting the hypothesis that some NRPs isolated from sponges are actually synthesized by symbiotic bacteria rather than by the sponges themselves. A comparison of peptide monomeric compositions as a function of biological activity showed that some monomers are specific to a class of activities. An analysis of the monomer compositions of peptide products predicted from genomic information (metagenomics and high-throughput genome sequencing) or of new peptides detected by mass spectrometry analysis applied to a culture supernatant can provide indications of the origin of a peptide and/or its biological activity.

摘要

非核糖体肽 (NRPs) 是微生物产生的具有广泛生物活性和药物应用的分子(例如,抗生素、免疫调节和抗肿瘤活性)。NRPs 的一个特点是其单体的生物多样性,远远超出了 20 种蛋白质氨基酸残基。Norine 是一个综合的 NRPs 数据库,使我们能够首次回顾 NRPs 的主要特征,特别是它们的单体生物多样性。我们的分析突出了细菌合成的 NRPs 与从后生动物(特别是海绵)中分离出的 NRPs 之间存在显著的相似关系,这支持了一些从海绵中分离出的 NRPs 实际上是由共生细菌而不是海绵本身合成的假说。对作为生物活性函数的肽单体组成的比较表明,一些单体是特定于一类活性的。对基于基因组信息(宏基因组学和高通量基因组测序)预测的肽产物的单体组成或通过应用于培养上清液的质谱分析检测到的新肽的单体组成的分析,可以提供关于肽的起源和/或其生物活性的指示。

相似文献

1
Diversity of monomers in nonribosomal peptides: towards the prediction of origin and biological activity.
J Bacteriol. 2010 Oct;192(19):5143-50. doi: 10.1128/JB.00315-10. Epub 2010 Aug 6.
2
A new fingerprint to predict nonribosomal peptides activity.
J Comput Aided Mol Des. 2012 Oct;26(10):1187-94. doi: 10.1007/s10822-012-9608-4. Epub 2012 Sep 29.
3
NORINE: a database of nonribosomal peptides.
Nucleic Acids Res. 2008 Jan;36(Database issue):D326-31. doi: 10.1093/nar/gkm792. Epub 2007 Oct 2.
4
Structural pattern matching of nonribosomal peptides.
BMC Struct Biol. 2009 Mar 18;9:15. doi: 10.1186/1472-6807-9-15.
5
Bioinformatics Tools for the Discovery of New Nonribosomal Peptides.
Methods Mol Biol. 2016;1401:209-32. doi: 10.1007/978-1-4939-3375-4_14.
6
Chapter 14. Biosynthesis of nonribosomal peptide precursors.
Methods Enzymol. 2009;458:353-78. doi: 10.1016/S0076-6879(09)04814-9.
7
Monomer structure fingerprints: an extension of the monomer composition version for peptide databases.
J Comput Aided Mol Des. 2020 Nov;34(11):1147-1156. doi: 10.1007/s10822-020-00336-8. Epub 2020 Aug 19.
9
rBAN: retro-biosynthetic analysis of nonribosomal peptides.
J Cheminform. 2019 Feb 8;11(1):13. doi: 10.1186/s13321-019-0335-x.
10
Prediction of monomer isomery in Florine: a workflow dedicated to nonribosomal peptide discovery.
PLoS One. 2014 Jan 21;9(1):e85667. doi: 10.1371/journal.pone.0085667. eCollection 2014.

引用本文的文献

1
Plant protein-derived anti-breast cancer peptides: sources, therapeutic approaches, mechanisms, and nanoparticle design.
Front Pharmacol. 2025 Jan 17;15:1468977. doi: 10.3389/fphar.2024.1468977. eCollection 2024.
2
Genomic insights into the cold adaptation and secondary metabolite potential of sp. WY3 from Antarctic krill.
Front Microbiol. 2024 Nov 5;15:1459716. doi: 10.3389/fmicb.2024.1459716. eCollection 2024.
3
Bacillus velezensis: a versatile ally in the battle against phytopathogens-insights and prospects.
Appl Microbiol Biotechnol. 2024 Aug 15;108(1):439. doi: 10.1007/s00253-024-13255-7.
4
Cesium Carbonate Promoted Direct Amidation of Unactivated Esters with Amino Alcohol Derivatives.
J Org Chem. 2024 Apr 5;89(7):4958-4970. doi: 10.1021/acs.joc.4c00162. Epub 2024 Mar 24.
6
Bioinformatic Analysis Reveals both Oversampled and Underexplored Biosynthetic Diversity in Nonribosomal Peptides.
ACS Chem Biol. 2023 Mar 17;18(3):476-483. doi: 10.1021/acschembio.2c00761. Epub 2023 Feb 23.
7
Emulating nonribosomal peptides with ribosomal biosynthetic strategies.
RSC Chem Biol. 2022 Dec 6;4(1):7-36. doi: 10.1039/d2cb00169a. eCollection 2023 Jan 4.
8
Macrophage-targeting oligopeptides from .
Chem Sci. 2022 Jul 15;13(31):9091-9101. doi: 10.1039/d2sc00860b. eCollection 2022 Aug 10.
9
A novel family of non-secreted tridecaptin lipopeptide produced by Paenibacillus elgii.
Amino Acids. 2022 Nov;54(11):1477-1489. doi: 10.1007/s00726-022-03187-9. Epub 2022 Jul 21.
10
Bifurcation drives the evolution of assembly-line biosynthesis.
Nat Commun. 2022 Jun 17;13(1):3498. doi: 10.1038/s41467-022-30950-z.

本文引用的文献

3
Synthesis and biological activities of cyclic peptide, hymenamide analogs.
Adv Exp Med Biol. 2009;611:323-4. doi: 10.1007/978-0-387-73657-0_144.
4
Chapter 13. Nonribosomal peptide synthetases mechanistic and structural aspects of essential domains.
Methods Enzymol. 2009;458:337-51. doi: 10.1016/S0076-6879(09)04813-7.
5
Structural pattern matching of nonribosomal peptides.
BMC Struct Biol. 2009 Mar 18;9:15. doi: 10.1186/1472-6807-9-15.
6
Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish waters.
Mar Biotechnol (NY). 2009 May-Jun;11(3):384-96. doi: 10.1007/s10126-008-9154-1. Epub 2008 Oct 25.
7
The screening of antimicrobial bacteria with diverse novel nonribosomal peptide synthetase (NRPS) genes from South China sea sponges.
Mar Biotechnol (NY). 2009 May-Jun;11(3):346-55. doi: 10.1007/s10126-008-9148-z. Epub 2008 Oct 14.
8
Structure elucidation and biosynthesis of fuscachelins, peptide siderophores from the moderate thermophile Thermobifida fusca.
Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15311-6. doi: 10.1073/pnas.0805451105. Epub 2008 Oct 1.
9
Aib residues in peptaibiotics and synthetic sequences: analysis of nonhelical conformations.
Chem Biodivers. 2008 Jul;5(7):1238-62. doi: 10.1002/cbdv.200890112.
10
Synthesis and cytotoxicity of aurilide analogs.
Bioorg Med Chem Lett. 2008 Jul 15;18(14):3902-5. doi: 10.1016/j.bmcl.2008.06.035. Epub 2008 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验