Institute of Biochemistry, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.
Nat Methods. 2010 Sep;7(9):747-54. doi: 10.1038/nmeth.1486. Epub 2010 Aug 8.
Fluorescence time-lapse imaging has become a powerful tool to investigate complex dynamic processes such as cell division or intracellular trafficking. Automated microscopes generate time-resolved imaging data at high throughput, yet tools for quantification of large-scale movie data are largely missing. Here we present CellCognition, a computational framework to annotate complex cellular dynamics. We developed a machine-learning method that combines state-of-the-art classification with hidden Markov modeling for annotation of the progression through morphologically distinct biological states. Incorporation of time information into the annotation scheme was essential to suppress classification noise at state transitions and confusion between different functional states with similar morphology. We demonstrate generic applicability in different assays and perturbation conditions, including a candidate-based RNA interference screen for regulators of mitotic exit in human cells. CellCognition is published as open source software, enabling live-cell imaging-based screening with assays that directly score cellular dynamics.
荧光延时成像已经成为研究细胞分裂或细胞内运输等复杂动态过程的有力工具。自动化显微镜以高通量生成时分辨图像数据,但缺乏用于大规模电影数据定量分析的工具。本文介绍了 CellCognition,这是一个用于注释复杂细胞动力学的计算框架。我们开发了一种机器学习方法,将最先进的分类与隐马尔可夫建模相结合,用于注释通过形态不同的生物状态的进展。将时间信息纳入注释方案对于抑制状态转换时的分类噪声以及形态相似的不同功能状态之间的混淆至关重要。我们在不同的测定和扰动条件下证明了通用适用性,包括基于候选的人类细胞有丝分裂退出调节剂的 RNA 干扰筛选。CellCognition 作为开源软件发布,支持基于活细胞成像的筛选,该筛选可以直接对细胞动力学进行评分。