Suppr超能文献

牛诺如病毒:碳水化合物配体、环境污染以及通过牡蛎潜在的跨物种传播。

Bovine norovirus: carbohydrate ligand, environmental contamination, and potential cross-species transmission via oysters.

机构信息

INSERM, U892, Université de Nantes, Nantes, France.

出版信息

Appl Environ Microbiol. 2010 Oct;76(19):6404-11. doi: 10.1128/AEM.00671-10. Epub 2010 Aug 13.

Abstract

Noroviruses (NoV) are major agents of acute gastroenteritis in humans and the primary pathogens of shellfish-related outbreaks. Previous studies showed that some human strains bind to oyster tissues through carbohydrate ligands that are similar to their human receptors. Thus, based on presentation of shared norovirus carbohydrate ligands, oysters could selectively concentrate animal strains with increased ability to overcome species barriers. In comparison with human GI and GII strains, bovine GIII NoV strains, although frequently detected in bovine feces and waters of two estuaries of Brittany, were seldom detected in oysters grown in these estuaries. Characterization of the carbohydrate ligand from a new GIII strain indicated recognition of the alpha-galactosidase (α-Gal) epitope not expressed by humans, similar to the GIII.2 Newbury2 strain. This ligand was not detectable on oyster tissues, suggesting that oysters may not be able to accumulate substantial amounts of GIII strains due to the lack of shared carbohydrate ligand and that they should be unable to contribute to select GIII strains with an increased ability to recognize humans.

摘要

诺如病毒(NoV)是人类急性肠胃炎的主要病原体,也是贝类相关疫情的主要病原体。先前的研究表明,一些人类毒株通过与人类受体相似的碳水化合物配体结合到牡蛎组织中。因此,基于共同的诺如病毒碳水化合物配体的呈现,牡蛎可能会选择性地浓缩具有增加克服物种障碍能力的动物毒株。与人类 GI 和 GII 株相比,牛 GIII NoV 株虽然经常在布列塔尼两个河口的牛粪便和水中检测到,但在这些河口生长的牡蛎中很少检测到。对一种新的 GIII 株碳水化合物配体的特征分析表明,它识别了人类不表达的α-半乳糖苷酶(α-Gal)表位,类似于 GIII.2 Newbury2 株。这种配体在牡蛎组织上无法检测到,这表明由于缺乏共同的碳水化合物配体,牡蛎可能无法积累大量的 GIII 株,并且它们应该无法选择具有增加识别人类能力的 GIII 株。

相似文献

1
Bovine norovirus: carbohydrate ligand, environmental contamination, and potential cross-species transmission via oysters.
Appl Environ Microbiol. 2010 Oct;76(19):6404-11. doi: 10.1128/AEM.00671-10. Epub 2010 Aug 13.
2
Distribution in tissue and seasonal variation of norovirus genogroup I and II ligands in oysters.
Appl Environ Microbiol. 2010 Aug;76(16):5621-30. doi: 10.1128/AEM.00148-10. Epub 2010 Jun 18.
4
Transmission of viruses through shellfish: when specific ligands come into play.
Curr Opin Virol. 2012 Feb;2(1):103-10. doi: 10.1016/j.coviro.2011.10.029. Epub 2011 Nov 25.
5
Molecular analysis of an oyster-related norovirus outbreak.
J Clin Virol. 2009 Jun;45(2):105-8. doi: 10.1016/j.jcv.2009.04.011. Epub 2009 May 17.
6
Detection and molecular characterization of norovirus from oysters implicated in outbreaks in the US.
Food Microbiol. 2016 Oct;59:76-84. doi: 10.1016/j.fm.2016.05.009. Epub 2016 May 15.
7
Follow-Up of Norovirus Contamination in an Oyster Production Area Linked to Repeated Outbreaks.
Food Environ Virol. 2017 Mar;9(1):54-61. doi: 10.1007/s12560-016-9260-6. Epub 2016 Sep 9.
8
Alternative attachment factors and internalization pathways for GIII.2 bovine noroviruses.
J Gen Virol. 2011 Jun;92(Pt 6):1398-1409. doi: 10.1099/vir.0.030072-0. Epub 2011 Feb 23.
9
Weekly variations in norovirus genogroup II genotypes in Japanese oysters.
Int J Food Microbiol. 2018 Nov 2;284:48-55. doi: 10.1016/j.ijfoodmicro.2018.06.027. Epub 2018 Jul 5.
10
Molecular Evidence of Oysters as Vehicle of Norovirus GII.P17-GII.17.
Emerg Infect Dis. 2016 Nov;22(11):2024-2025. doi: 10.3201/eid2211.161171.

引用本文的文献

2
A Comprehensive Review for the Surveillance of Human Pathogenic Microorganisms in Shellfish.
Microorganisms. 2023 Aug 31;11(9):2218. doi: 10.3390/microorganisms11092218.
4
5
Can shellfish be used to monitor SARS-CoV-2 in the coastal environment?
Sci Total Environ. 2021 Jul 15;778:146270. doi: 10.1016/j.scitotenv.2021.146270. Epub 2021 Mar 8.
6
7
Scientific Opinion on an update on the present knowledge on the occurrence and control of foodborne viruses.
EFSA J. 2011 Jul 14;9(7):2190. doi: 10.2903/j.efsa.2011.2190. eCollection 2011 Jul.
9
Critical Review on the Public Health Impact of Norovirus Contamination in Shellfish and the Environment: A UK Perspective.
Food Environ Virol. 2017 Jun;9(2):123-141. doi: 10.1007/s12560-017-9279-3. Epub 2017 Feb 7.

本文引用的文献

1
Distribution in tissue and seasonal variation of norovirus genogroup I and II ligands in oysters.
Appl Environ Microbiol. 2010 Aug;76(16):5621-30. doi: 10.1128/AEM.00148-10. Epub 2010 Jun 18.
2
Viral shape-shifting: norovirus evasion of the human immune system.
Nat Rev Microbiol. 2010 Mar;8(3):231-41. doi: 10.1038/nrmicro2296. Epub 2010 Feb 2.
3
Norovirus gastroenteritis.
N Engl J Med. 2009 Oct 29;361(18):1776-85. doi: 10.1056/NEJMra0804575.
4
Risk assessment in shellfish-borne outbreaks of hepatitis A.
Appl Environ Microbiol. 2009 Dec;75(23):7350-5. doi: 10.1128/AEM.01177-09. Epub 2009 Oct 9.
7
Epidemiological study of bovine norovirus infection by RT-PCR and a VLP-based antibody ELISA.
Vet Microbiol. 2009 Jun 12;137(3-4):243-51. doi: 10.1016/j.vetmic.2009.01.031. Epub 2009 Jan 30.
8
Norovirus removal and particle association in a waste stabilization pond.
Environ Sci Technol. 2008 Dec 15;42(24):9151-7. doi: 10.1021/es802787v.
9
Distribution of norovirus in oyster tissues.
J Appl Microbiol. 2008 Dec;105(6):1966-72. doi: 10.1111/j.1365-2672.2008.03970.x.
10
Detection and quantification of noroviruses in shellfish.
Appl Environ Microbiol. 2009 Feb;75(3):618-24. doi: 10.1128/AEM.01507-08. Epub 2008 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验