Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA.
J Am Chem Soc. 2010 Sep 22;132(37):12811-3. doi: 10.1021/ja104573b.
Infrared (IR) band shifts of isolated vibrational transitions can serve as quantitative and directional probes of local electrostatic fields, due to the vibrational Stark effect. However, departures from the Stark model can arise when the probe participates in specific, chemical interactions, such as direct hydrogen bonding. We present a method to identify and correct for these departures based on comparison of (13)C NMR chemical shifts and IR frequencies each calibrated in turn by a solvatochromic model. We demonstrate how the tandem use of these experimental observables can be applied to a thiocyanate-modified protein, ketosteroid isomerase, and show, by comparison to structural models, that changes in electrostatic field can be measured within the complex protein environment even in the background of direct hydrogen bonding to the probe.
红外(IR)带位移的孤立振动跃迁可以作为局部静电场的定量和定向探针,这是由于振动斯塔克效应。然而,当探针参与特定的化学相互作用时,如直接氢键,可能会偏离斯塔克模型。我们提出了一种基于(13)C NMR 化学位移和 IR 频率比较的方法,这些化学位移和 IR 频率依次通过溶剂化模型进行校准。我们展示了如何将这些实验观测值串联起来应用于硫氰酸酯修饰的蛋白质,即酮固醇异构酶,并通过与结构模型进行比较,表明即使在直接与探针形成氢键的背景下,也可以在复杂的蛋白质环境中测量静电场的变化。