Suppr超能文献

基于层次生成模型的神经解码。

Neural decoding with hierarchical generative models.

机构信息

Radboud University Nijmegen, Institute for Computing and Information Sciences, 6525 AJ Nijmegen, the Netherlands.

出版信息

Neural Comput. 2010 Dec;22(12):3127-42. doi: 10.1162/NECO_a_00047. Epub 2010 Sep 21.

Abstract

Recent research has shown that reconstruction of perceived images based on hemodynamic response as measured with functional magnetic resonance imaging (fMRI) is starting to become feasible. In this letter, we explore reconstruction based on a learned hierarchy of features by employing a hierarchical generative model that consists of conditional restricted Boltzmann machines. In an unsupervised phase, we learn a hierarchy of features from data, and in a supervised phase, we learn how brain activity predicts the states of those features. Reconstruction is achieved by sampling from the model, conditioned on brain activity. We show that by using the hierarchical generative model, we can obtain good-quality reconstructions of visual images of handwritten digits presented during an fMRI scanning session.

摘要

最近的研究表明,基于功能磁共振成像(fMRI)测量的血流动力学响应来重建感知图像正变得可行。在这封信中,我们通过使用包含条件受限玻尔兹曼机的分层生成模型来探索基于学习的特征层次结构的重建。在无监督阶段,我们从数据中学习特征层次结构,在监督阶段,我们学习大脑活动如何预测这些特征的状态。通过对大脑活动进行条件采样,从模型中进行重建。我们表明,通过使用分层生成模型,我们可以对手写数字的视觉图像进行高质量的 fMRI 扫描重建。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验