Le Lynn, Ambrogioni Luca, Seeliger Katja, Güçlütürk Yağmur, van Gerven Marcel, Güçlü Umut
Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Front Neurosci. 2022 Nov 14;16:940972. doi: 10.3389/fnins.2022.940972. eCollection 2022.
Reconstructing complex and dynamic visual perception from brain activity remains a major challenge in machine learning applications to neuroscience. Here, we present a new method for reconstructing naturalistic images and videos from very large single-participant functional magnetic resonance imaging data that leverages the recent success of image-to-image transformation networks. This is achieved by exploiting spatial information obtained from retinotopic mappings across the visual system. More specifically, we first determine what position each voxel in a particular region of interest would represent in the visual field based on its corresponding receptive field location. Then, the 2D image representation of the brain activity on the visual field is passed to a fully convolutional image-to-image network trained to recover the original stimuli using VGG feature loss with an adversarial regularizer. In our experiments, we show that our method offers a significant improvement over existing video reconstruction techniques.
从大脑活动中重建复杂且动态的视觉感知仍是机器学习应用于神经科学领域的一项重大挑战。在此,我们提出了一种新方法,可从非常大的单参与者功能磁共振成像数据中重建自然图像和视频,该方法利用了图像到图像转换网络最近取得的成功。这是通过利用从整个视觉系统的视网膜拓扑映射中获得的空间信息来实现的。更具体地说,我们首先根据特定感兴趣区域中每个体素相应的感受野位置,确定其在视野中会代表的位置。然后,将视野上大脑活动的二维图像表示传递给一个全卷积图像到图像网络,该网络经过训练,使用带有对抗正则化器的VGG特征损失来恢复原始刺激。在我们的实验中,我们表明我们的方法比现有的视频重建技术有显著改进。