Suppr超能文献

采用 SQUID 弛豫测量法对单核磁铁矿纳米粒子进行磁性成像的特性研究。

Characterization of single-core magnetite nanoparticles for magnetic imaging by SQUID relaxometry.

机构信息

Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA.

出版信息

Phys Med Biol. 2010 Oct 7;55(19):5985-6003. doi: 10.1088/0031-9155/55/19/023. Epub 2010 Sep 21.

Abstract

Optimizing the sensitivity of SQUID (superconducting quantum interference device) relaxometry for detecting cell-targeted magnetic nanoparticles for in vivo diagnostics requires nanoparticles with a narrow particle size distribution to ensure that the Néel relaxation times fall within the measurement timescale (50 ms-2 s, in this work). To determine the optimum particle size, single-core magnetite nanoparticles (with nominal average diameters 20, 25, 30 and 35 nm) were characterized by SQUID relaxometry, transmission electron microscopy, SQUID susceptometry, dynamic light scattering and zeta potential analysis. The SQUID relaxometry signal (detected magnetic moment/kg) from both the 25 nm and 30 nm particles was an improvement over previously studied multi-core particles. However, the detected moments were an order of magnitude lower than predicted based on a simple model that takes into account the measured size distributions (but neglects dipolar interactions and polydispersity of the anisotropy energy density), indicating that improved control of several different nanoparticle properties (size, shape and coating thickness) will be required to achieve the highest detection sensitivity. Antibody conjugation and cell incubation experiments show that single-core particles enable a higher detected moment per cell, but also demonstrate the need for improved surface treatments to mitigate aggregation and improve specificity.

摘要

为了提高用于体内诊断的细胞靶向磁性纳米粒子的 SQUID(超导量子干涉仪)弛豫率检测的灵敏度,需要具有较窄粒径分布的纳米粒子,以确保奈耳弛豫时间落在测量时间范围内(在这项工作中为 50ms-2s)。为了确定最佳粒径,通过 SQUID 弛豫率、透射电子显微镜、SQUID 磁化率、动态光散射和zeta 电位分析对单磁核磁铁矿纳米粒子(标称平均直径为 20nm、25nm、30nm 和 35nm)进行了表征。与之前研究的多磁核粒子相比,25nm 和 30nm 粒子的 SQUID 弛豫率信号(检测到的磁矩/kg)有所提高。然而,检测到的磁矩比基于简单模型预测的磁矩低一个数量级,该模型考虑了测量的粒径分布(但忽略了偶极相互作用和各向异性能量密度的多分散性),这表明需要改进对几个不同纳米粒子特性(尺寸、形状和涂层厚度)的控制,以实现最高的检测灵敏度。抗体偶联和细胞孵育实验表明,单磁核粒子每细胞可检测到更高的磁矩,但也需要改进表面处理以减轻聚集并提高特异性。

相似文献

1
Characterization of single-core magnetite nanoparticles for magnetic imaging by SQUID relaxometry.
Phys Med Biol. 2010 Oct 7;55(19):5985-6003. doi: 10.1088/0031-9155/55/19/023. Epub 2010 Sep 21.
3
Characterization of magnetite nanoparticles for SQUID-relaxometry and magnetic needle biopsy.
J Magn Magn Mater. 2009 May 1;321(10):1459-1464. doi: 10.1016/j.jmmm.2009.02.067.
4
Investigation of superparamagnetic iron oxide nanoparticles for MR-visualization of surgical implants.
Curr Pharm Biotechnol. 2012 Mar;13(4):545-51. doi: 10.2174/138920112799436249.
6
Transient magnetic birefringence for determining magnetic nanoparticle diameters in dense, highly light scattering media.
Nanotechnology. 2012 Apr 20;23(15):155501. doi: 10.1088/0957-4484/23/15/155501. Epub 2012 Mar 28.
9
Size-dependent nonlinear weak-field magnetic behavior of maghemite nanoparticles.
Small. 2012 Jun 25;8(12):1945-56. doi: 10.1002/smll.201102660. Epub 2012 Apr 10.
10
In vivo and real-time measurement of magnetic nanoparticles distribution in animals by scanning SQUID biosusceptometry for biomedicine study.
IEEE Trans Biomed Eng. 2011 Oct;58(10):2719-24. doi: 10.1109/TBME.2010.2090042. Epub 2010 Oct 28.

引用本文的文献

1
Quantum Diamond Microscopy of Individual Vaterite Microspheres Containing Magnetite Nanoparticles.
Nanomaterials (Basel). 2025 Jul 23;15(15):1141. doi: 10.3390/nano15151141.
4
Irregularly Shaped Iron Nitride Nanoparticles as a Potential Candidate for Biomedical Applications: From Synthesis to Characterization.
ACS Omega. 2020 May 13;5(20):11756-11767. doi: 10.1021/acsomega.0c01130. eCollection 2020 May 26.
5
Characterization and Relaxation Properties of a Series of Monodispersed Magnetic Nanoparticles.
Sensors (Basel). 2019 Aug 2;19(15):3396. doi: 10.3390/s19153396.
6
Pulsed Excitation in Magnetic Particle Imaging.
IEEE Trans Med Imaging. 2019 Oct;38(10):2389-2399. doi: 10.1109/TMI.2019.2898202. Epub 2019 Feb 11.
7
Nanopharmaceuticals (part 2): products in the pipeline.
Int J Nanomedicine. 2015 Feb 11;10:1245-57. doi: 10.2147/IJN.S65526. eCollection 2015.
8
Spectroscopic AC Susceptibility Imaging (sASI) of Magnetic Nanoparticles.
J Magn Magn Mater. 2015 Feb 1;375:164-176. doi: 10.1016/j.jmmm.2014.10.011.
9
Analysis of the influence of cell heterogeneity on nanoparticle dose response.
ACS Nano. 2014 Jul 22;8(7):6693-700. doi: 10.1021/nn502356f.
10
Development of a magnetic nanoparticle susceptibility magnitude imaging array.
Phys Med Biol. 2014 Feb 21;59(4):1047-71. doi: 10.1088/0031-9155/59/4/1047. Epub 2014 Feb 7.

本文引用的文献

1
Determination of energy barrier distributions of magnetic nanoparticles by temperature dependent magnetorelaxometry.
Nanotechnology. 2003 Dec;14(12):1251-4. doi: 10.1088/0957-4484/14/12/003. Epub 2003 Oct 17.
2
Characterization of magnetite nanoparticles for SQUID-relaxometry and magnetic needle biopsy.
J Magn Magn Mater. 2009 May 1;321(10):1459-1464. doi: 10.1016/j.jmmm.2009.02.067.
3
Enhanced leukemia cell detection using a novel magnetic needle and nanoparticles.
Cancer Res. 2009 Nov 1;69(21):8310-6. doi: 10.1158/0008-5472.CAN-09-1083. Epub 2009 Oct 6.
4
Optimization of nanoparticle core size for magnetic particle imaging.
J Magn Magn Mater. 2009;321(10):1548-1551. doi: 10.1016/j.jmmm.2009.02.083.
5
Development of a remanence measurement-based SQUID system with in-depth resolution for nanoparticle imaging.
Phys Med Biol. 2009 May 21;54(10):N177-88. doi: 10.1088/0031-9155/54/10/N01. Epub 2009 Apr 27.
6
Optimizing magnetic nanoparticle design for nanothermotherapy.
Nanomedicine (Lond). 2008 Dec;3(6):831-44. doi: 10.2217/17435889.3.6.831.
7
Kidney transplantation: mechanisms of rejection and acceptance.
Annu Rev Pathol. 2008;3:189-220. doi: 10.1146/annurev.pathmechdis.3.121806.151508.
8
A biomagnetic system for in vivo cancer imaging.
Phys Med Biol. 2005 Mar 21;50(6):1273-93. doi: 10.1088/0031-9155/50/6/016. Epub 2005 Mar 2.
9
Ultrasensitive magnetic biosensor for homogeneous immunoassay.
Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14268-72. doi: 10.1073/pnas.97.26.14268.
10
Influence of dipolar interaction on magnetic properties of ultrafine ferromagnetic particles.
Phys Rev Lett. 2000 Jan 3;84(1):167-70. doi: 10.1103/PhysRevLett.84.167.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验