Suppr超能文献

通过全面的代谢物分析和热力学分析,揭示了木糖发酵酿酒酵母的局限性。

Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis.

机构信息

Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, Petersgasse 12/I, A-8010 Graz, Austria.

出版信息

Appl Environ Microbiol. 2010 Nov;76(22):7566-74. doi: 10.1128/AEM.01787-10. Epub 2010 Oct 1.

Abstract

Little is known about how the general lack of efficiency with which recombinant Saccharomyces cerevisiae strains utilize xylose affects the yeast metabolome. Quantitative metabolomics was therefore performed for two xylose-fermenting S. cerevisiae strains, BP000 and BP10001, both engineered to produce xylose reductase (XR), NAD(+)-dependent xylitol dehydrogenase and xylulose kinase, and the corresponding wild-type strain CEN.PK 113-7D, which is not able to metabolize xylose. Contrary to BP000 expressing an NADPH-preferring XR, BP10001 expresses an NADH-preferring XR. An updated protocol of liquid chromatography/tandem mass spectrometry that was validated by applying internal (13)C-labeled metabolite standards was used to quantitatively determine intracellular pools of metabolites from the central carbon, energy, and redox metabolism and of eight amino acids. Metabolomic responses to different substrates, glucose (growth) or xylose (no growth), were analyzed for each strain. In BP000 and BP10001, flux through glycolysis was similarly reduced (∼27-fold) when xylose instead of glucose was metabolized. As a consequence, (i) most glycolytic metabolites were dramatically (≤ 120-fold) diluted and (ii) energy and anabolic reduction charges were affected due to decreased ATP/AMP ratios (3- to 4-fold) and reduced NADP(+) levels (∼3-fold), respectively. Contrary to that in BP000, the catabolic reduction charge was not altered in BP10001. This was due mainly to different utilization of NADH by XRs in BP000 (44%) and BP10001 (97%). Thermodynamic analysis complemented by enzyme kinetic considerations suggested that activities of pentose phosphate pathway enzymes and the pool of fructose-6-phosphate are potential factors limiting xylose utilization. Coenzyme and ATP pools did not rate limit flux through xylose pathway enzymes.

摘要

人们对重组酿酒酵母菌株利用木糖的整体效率低下如何影响酵母代谢组知之甚少。因此,对两种木糖发酵酿酒酵母菌株 BP000 和 BP10001 进行了定量代谢组学研究,这两种菌株都经过工程改造以生产木糖还原酶(XR)、NAD(+)依赖的木糖醇脱氢酶和木酮糖激酶,以及相应的不能代谢木糖的野生型菌株 CEN.PK 113-7D。与表达 NADPH 偏好性 XR 的 BP000 相反,BP10001 表达 NADH 偏好性 XR。使用经过内部(13)C 标记代谢物标准品验证的液相色谱/串联质谱的更新方案,定量测定了来自中心碳、能量和氧化还原代谢以及八种氨基酸的细胞内代谢物池。分析了每种菌株对不同底物(葡萄糖[生长]或木糖[不生长])的代谢组学反应。当木糖代替葡萄糖被代谢时,BP000 和 BP10001 中的糖酵解通量相似地降低(27 倍)。结果是,(i)大多数糖酵解代谢物显著(≤120 倍)稀释,(ii)由于 ATP/AMP 比值降低(3-4 倍)和 NADP(+)水平降低(3 倍),能量和合成还原电荷受到影响。与 BP000 不同,BP10001 的分解还原电荷没有改变。这主要是由于 XR 在 BP000 中(44%)和 BP10001 中(97%)对 NADH 的不同利用所致。热力学分析辅以酶动力学考虑表明,戊糖磷酸途径酶的活性和果糖-6-磷酸池是限制木糖利用的潜在因素。辅酶和 ATP 池不会限制木糖途径酶的通量。

相似文献

4
A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation.
J Ind Microbiol Biotechnol. 2011 May;38(5):617-26. doi: 10.1007/s10295-010-0806-6. Epub 2010 Aug 17.
9
Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
Appl Microbiol Biotechnol. 2009 Sep;84(4):751-61. doi: 10.1007/s00253-009-2053-1. Epub 2009 Jun 9.

引用本文的文献

1
D-Xylose Sensing in : Insights from D-Glucose Signaling and Native D-Xylose Utilizers.
Int J Mol Sci. 2021 Nov 17;22(22):12410. doi: 10.3390/ijms222212410.
8
Model-based biotechnological potential analysis of Kluyveromyces marxianus central metabolism.
J Ind Microbiol Biotechnol. 2017 Aug;44(8):1177-1190. doi: 10.1007/s10295-017-1946-8. Epub 2017 Apr 25.

本文引用的文献

3
Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives.
Appl Microbiol Biotechnol. 2009 Aug;84(1):37-53. doi: 10.1007/s00253-009-2101-x. Epub 2009 Jul 2.
4
Proteome analysis of the xylose-fermenting mutant yeast strain TMB 3400.
Yeast. 2009 Jul;26(7):371-82. doi: 10.1002/yea.1673.
5
New improvements for lignocellulosic ethanol.
Curr Opin Biotechnol. 2009 Jun;20(3):372-80. doi: 10.1016/j.copbio.2009.05.009. Epub 2009 Jun 6.
7
Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae.
Metab Eng. 2009 Jul-Sep;11(4-5):253-61. doi: 10.1016/j.ymben.2009.05.001. Epub 2009 May 13.
8
Cross-platform comparison of methods for quantitative metabolomics of primary metabolism.
Anal Chem. 2009 Mar 15;81(6):2135-43. doi: 10.1021/ac8022857.
9
Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism.
J Bacteriol. 2009 Apr;191(7):2112-21. doi: 10.1128/JB.01523-08. Epub 2009 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验