Miskovic Ljubisa, Alff-Tuomala Susanne, Soh Keng Cher, Barth Dorothee, Salusjärvi Laura, Pitkänen Juha-Pekka, Ruohonen Laura, Penttilä Merja, Hatzimanikatis Vassily
Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
VTT Technical Research Centre of Finland Ltd, Espoo, Finland.
Biotechnol Biofuels. 2017 Jun 26;10:166. doi: 10.1186/s13068-017-0838-5. eCollection 2017.
Recent advancements in omics measurement technologies have led to an ever-increasing amount of available experimental data that necessitate systems-oriented methodologies for efficient and systematic integration of data into consistent large-scale kinetic models. These models can help us to uncover new insights into cellular physiology and also to assist in the rational design of bioreactor or fermentation processes. Optimization and Risk Analysis of Complex Living Entities (ORACLE) framework for the construction of large-scale kinetic models can be used as guidance for formulating alternative metabolic engineering strategies.
We used ORACLE in a metabolic engineering problem: improvement of the xylose uptake rate during mixed glucose-xylose consumption in a recombinant strain. Using the data from bioreactor fermentations, we characterized network flux and concentration profiles representing possible physiological states of the analyzed strain. We then identified enzymes that could lead to improved flux through xylose transporters (XTR). For some of the identified enzymes, including hexokinase (HXK), we could not deduce if their control over XTR was positive or negative. We thus performed a follow-up experiment, and we found out that deletion improves xylose uptake rate. The data from the performed experiments were then used to prune the kinetic models, and the predictions of the pruned population of kinetic models were in agreement with the experimental data collected on the -deficient strain.
We present a design-build-test cycle composed of modeling efforts and experiments with a glucose-xylose co-utilizing recombinant and its -deficient mutant that allowed us to uncover interdependencies between upper glycolysis and xylose uptake pathway. Through this cycle, we also obtained kinetic models with improved prediction capabilities. The present study demonstrates the potential of integrated "modeling and experiments" systems biology approaches that can be applied for diverse applications ranging from biotechnology to drug discovery.
组学测量技术的最新进展导致可用实验数据量不断增加,这就需要采用面向系统的方法,以便将数据高效、系统地整合到一致的大规模动力学模型中。这些模型有助于我们揭示细胞生理学的新见解,还能辅助生物反应器或发酵过程的合理设计。用于构建大规模动力学模型的复杂生物实体优化与风险分析(ORACLE)框架可作为制定替代代谢工程策略的指导。
我们将ORACLE应用于一个代谢工程问题:提高重组菌株在葡萄糖 - 木糖混合消耗过程中的木糖摄取率。利用生物反应器发酵数据,我们表征了代表所分析菌株可能生理状态的网络通量和浓度分布。然后,我们确定了可能导致木糖转运蛋白(XTR)通量增加的酶。对于一些已确定的酶,包括己糖激酶(HXK),我们无法推断其对XTR的控制是正向还是负向。因此,我们进行了后续实验,发现基因敲除可提高木糖摄取率。然后,将所进行实验的数据用于修剪动力学模型,修剪后的动力学模型群体的预测结果与在基因缺陷菌株上收集的实验数据一致。
我们提出了一个由建模工作和实验组成的设计 - 构建 - 测试循环,该循环使用了一株葡萄糖 - 木糖共利用重组菌株及其基因缺陷突变体,使我们能够揭示糖酵解上游与木糖摄取途径之间的相互依赖性。通过这个循环,我们还获得了预测能力得到提高的动力学模型。本研究证明了综合“建模与实验”的系统生物学方法在从生物技术到药物发现等各种应用中的潜力。