Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA.
Neurorehabil Neural Repair. 2011 May;25(4):323-31. doi: 10.1177/1545968310382425. Epub 2010 Oct 4.
Brain-computer interfaces (BCIs) are devices that enable severely disabled people to communicate and interact with their environments using their brain waves. Most studies investigating BCI in humans have used scalp EEG as the source of electrical signals and focused on motor control of prostheses or computer cursors on a screen. The authors hypothesize that the use of brain signals obtained directly from the cortical surface will more effectively control a communication/spelling task compared to scalp EEG.
A total of 6 patients with medically intractable epilepsy were tested for the ability to control a visual keyboard using electrocorticographic (ECOG) signals. ECOG data collected during a P300 visual task paradigm were preprocessed and used to train a linear classifier to subsequently predict the intended target letters.
The classifier was able to predict the intended target character at or near 100% accuracy using fewer than 15 stimulation sequences in 5 of the 6 people tested. ECOG data from electrodes outside the language cortex contributed to the classifier and enabled participants to write words on a visual keyboard.
This is a novel finding because previous invasive BCI research in humans used signals exclusively from the motor cortex to control a computer cursor or prosthetic device. These results demonstrate that ECOG signals from electrodes both overlying and outside the language cortex can reliably control a visual keyboard to generate language output without voice or limb movements.
脑机接口(BCIs)是一种设备,它使严重残疾的人能够使用他们的脑电波与他们的环境进行通信和交互。大多数研究使用头皮脑电图(EEG)作为电信号的来源,并专注于假肢或屏幕上的计算机光标进行运动控制。作者假设,与头皮 EEG 相比,直接从皮质表面获得的脑信号将更有效地控制通信/拼写任务。
共有 6 名患有药物难治性癫痫的患者接受了使用皮质脑电图(ECOG)信号控制视觉键盘的能力测试。在 P300 视觉任务范式期间收集的 ECOG 数据经过预处理,并用于训练线性分类器,以随后预测预期的目标字母。
在 6 名测试者中的 5 名中,使用少于 15 个刺激序列,分类器能够以接近 100%的准确率预测预期的目标字符。来自语言皮层以外的电极的 ECOG 数据有助于分类器,并使参与者能够在视觉键盘上书写单词。
这是一个新颖的发现,因为之前在人类中进行的侵入性 BCI 研究仅使用来自运动皮层的信号来控制计算机光标或假肢设备。这些结果表明,来自覆盖语言皮层和语言皮层以外的电极的 ECOG 信号可以可靠地控制视觉键盘,无需语音或肢体运动即可生成语言输出。