Jamshidi Arash, Pauzauskie Peter J, Schuck P James, Ohta Aaron T, Chiou Pei-Yu, Chou Jeffrey, Yang Peidong, Wu Ming C
Department of Electrical Engineering, University of California, Berkeley, CA 94720, USA.
Nat Photonics. 2008;2(2):86-89. doi: 10.1038/nphoton.2007.277.
The synthesis of nanowires has advanced in the last decade to a point where a vast range of insulating, semiconducting, and metallic materials1 are available for use in integrated, heterogeneous optoelectronic devices at nanometer scales 2. However, a persistent challenge has been the development of a general strategy for the manipulation of individual nanowires with arbitrary composition. Here we report that individual semiconducting and metallic nanowires with diameters below 20 nm, are addressable with forces generated by optoelectronic tweezers (OET) 3. Using 100,000x less optical power density than optical tweezers, OET is capable of transporting individual nanowires with speeds 4x larger than maximum speeds achieved by optical tweezers. A real-time array of silver nanowires is formed using photopatterned virtual-electrodes, demonstrating the potential for massively parallel assemblies. Furthermore, OET enables the separation of semiconducting and metallic nanowires, suggesting a broad range of applications for the separation and heterogenous integration of one-dimensional nanoscale materials.
在过去十年中,纳米线的合成技术取得了长足进展,如今已有大量绝缘、半导体和金属材料可用于纳米尺度的集成异构光电器件。然而,一个长期存在的挑战是如何开发一种通用策略来操控任意成分的单根纳米线。在此,我们报告直径小于20 nm的半导体和金属单根纳米线可通过光电镊子(OET)产生的力进行寻址。与光镊相比,OET所需的光功率密度低100,000倍,能够以比光镊所能达到的最大速度快4倍的速度运输单根纳米线。利用光图案化虚拟电极形成了银纳米线实时阵列,展示了大规模并行组装的潜力。此外,OET能够分离半导体和金属纳米线,这表明其在一维纳米材料的分离和异构集成方面具有广泛应用前景。