Suppr超能文献

RiboSys,一种高分辨率、定量的方法,用于测量酿酒酵母中前体 mRNA 剪接和 3'端加工的体内动力学。

RiboSys, a high-resolution, quantitative approach to measure the in vivo kinetics of pre-mRNA splicing and 3'-end processing in Saccharomyces cerevisiae.

机构信息

Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, United Kingdom.

出版信息

RNA. 2010 Dec;16(12):2570-80. doi: 10.1261/rna.2162610. Epub 2010 Oct 25.

Abstract

We describe methods for obtaining a quantitative description of RNA processing at high resolution in budding yeast. As a model gene expression system, we constructed tetON (for induction studies) and tetOFF (for repression, derepression, and RNA degradation studies) yeast strains with a series of reporter genes integrated in the genome under the control of a tetO7 promoter. Reverse transcription and quantitative real-time-PCR (RT-qPCR) methods were adapted to allow the determination of mRNA abundance as the average number of copies per cell in a population. Fluorescence in situ hybridization (FISH) measurements of transcript numbers in individual cells validated the RT-qPCR approach for the average copy-number determination despite the broad distribution of transcript levels within a population of cells. In addition, RT-qPCR was used to distinguish the products of the different steps in splicing of the reporter transcripts, and methods were developed to map and quantify 3'-end cleavage and polyadenylation. This system permits pre-mRNA production, splicing, 3'-end maturation and degradation to be quantitatively monitored with unprecedented kinetic detail, suitable for mathematical modeling. Using this approach, we demonstrate that reporter transcripts are spliced prior to their 3'-end cleavage and polyadenylation, that is, cotranscriptionally.

摘要

我们描述了在 budding yeast 中以高分辨率获得 RNA 加工的定量描述的方法。作为一个模型基因表达系统,我们构建了 tetON(用于诱导研究)和 tetOFF(用于抑制、去抑制和 RNA 降解研究)酵母菌株,一系列报告基因在 tetO7 启动子的控制下整合到基因组中。我们对逆转录和定量实时 PCR(RT-qPCR)方法进行了改编,以允许在群体中每个细胞的平均拷贝数确定 mRNA 的丰度。荧光原位杂交(FISH)测量个别细胞中转录本数量验证了 RT-qPCR 方法,尽管细胞群体中的转录本水平分布广泛,但该方法适用于平均拷贝数的确定。此外,RT-qPCR 用于区分报告转录本剪接的不同步骤的产物,并开发了用于映射和量化 3'-末端切割和聚腺苷酸化的方法。该系统允许以前所未有的动力学细节定量监测前体 mRNA 的产生、剪接、3'-末端成熟和降解,适合数学建模。使用这种方法,我们证明报告转录本在其 3'-末端切割和聚腺苷酸化之前被剪接,即共转录。

相似文献

2
SRm160 splicing coactivator promotes transcript 3'-end cleavage.
Mol Cell Biol. 2002 Jan;22(1):148-60. doi: 10.1128/MCB.22.1.148-160.2002.
4
Pre-mRNA 3'-end processing complex assembly and function.
Wiley Interdiscip Rev RNA. 2011 May-Jun;2(3):321-35. doi: 10.1002/wrna.54. Epub 2010 Oct 18.
7
Cotranscriptional RNA checkpoints.
Epigenomics. 2010 Jun;2(3):449-55. doi: 10.2217/epi.10.21.
9
Distinct roles of Pcf11 zinc-binding domains in pre-mRNA 3'-end processing.
Nucleic Acids Res. 2017 Sep 29;45(17):10115-10131. doi: 10.1093/nar/gkx674.

引用本文的文献

2
Co-transcriptional gene regulation in eukaryotes and prokaryotes.
Nat Rev Mol Cell Biol. 2024 Jul;25(7):534-554. doi: 10.1038/s41580-024-00706-2. Epub 2024 Mar 20.
3
Transcriptome-Wide Analysis of mRNA Adenylation Status in Yeast Using Nanopore Sequencing.
Methods Mol Biol. 2024;2723:193-214. doi: 10.1007/978-1-0716-3481-3_12.
4
A Suite of New Strain Construction Vectors for Gene Expression Knockdown in Budding Yeast.
ACS Synth Biol. 2023 Feb 17;12(2):624-633. doi: 10.1021/acssynbio.2c00547. Epub 2023 Jan 17.
5
Co-transcriptional splicing regulates 3' end cleavage during mammalian erythropoiesis.
Mol Cell. 2021 Mar 4;81(5):998-1012.e7. doi: 10.1016/j.molcel.2020.12.018. Epub 2021 Jan 12.
6
Blocking late stages of splicing quickly limits pre-spliceosome assembly in vivo.
RNA Biol. 2019 Dec;16(12):1775-1784. doi: 10.1080/15476286.2019.1657788. Epub 2019 Sep 4.
8
Nascent RNA and the Coordination of Splicing with Transcription.
Cold Spring Harb Perspect Biol. 2019 Aug 1;11(8):a032227. doi: 10.1101/cshperspect.a032227.
9
Spt5 modulates cotranscriptional spliceosome assembly in .
RNA. 2019 Oct;25(10):1298-1310. doi: 10.1261/rna.070425.119. Epub 2019 Jul 9.
10
A fast and tuneable auxin-inducible degron for depletion of target proteins in budding yeast.
Yeast. 2019 Jan;36(1):75-81. doi: 10.1002/yea.3362. Epub 2018 Nov 12.

本文引用的文献

1
Processivity and coupling in messenger RNA transcription.
PLoS One. 2010 Jan 28;5(1):e8845. doi: 10.1371/journal.pone.0008845.
3
"Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions.
Mol Cell. 2009 Oct 23;36(2):178-91. doi: 10.1016/j.molcel.2009.09.018.
4
Rates of in situ transcription and splicing in large human genes.
Nat Struct Mol Biol. 2009 Nov;16(11):1128-33. doi: 10.1038/nsmb.1666. Epub 2009 Oct 11.
5
The many pathways of RNA degradation.
Cell. 2009 Feb 20;136(4):763-76. doi: 10.1016/j.cell.2009.01.019.
7
Single-RNA counting reveals alternative modes of gene expression in yeast.
Nat Struct Mol Biol. 2008 Dec;15(12):1263-71. doi: 10.1038/nsmb.1514. Epub 2008 Nov 16.
8
Systems for applied gene control in Saccharomyces cerevisiae.
Biotechnol Lett. 2008 Jun;30(6):979-87. doi: 10.1007/s10529-008-9647-z. Epub 2008 Feb 1.
9
The transcriptional cycle of HIV-1 in real-time and live cells.
J Cell Biol. 2007 Oct 22;179(2):291-304. doi: 10.1083/jcb.200706018.
10
Genomics and gene transcription kinetics in yeast.
Trends Genet. 2007 May;23(5):250-7. doi: 10.1016/j.tig.2007.03.006. Epub 2007 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验