Suppr超能文献

基于运输的形态测量学从显微镜图像中检测和可视化细胞表型差异。

Detecting and visualizing cell phenotype differences from microscopy images using transport-based morphometry.

机构信息

Center for Bioimage Informatics, Department of Biomedical Engineering and Department of Electrical and Computer Engineering, Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213.

出版信息

Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3448-53. doi: 10.1073/pnas.1319779111. Epub 2014 Feb 18.

Abstract

Modern microscopic imaging devices are able to extract more information regarding the subcellular organization of different molecules and proteins than can be obtained by visual inspection. Predetermined numerical features (descriptors) often used to quantify cells extracted from these images have long been shown useful for discriminating cell populations (e.g., normal vs. diseased). Direct visual or biological interpretation of results obtained, however, is often not a trivial task. We describe an approach for detecting and visualizing phenotypic differences between classes of cells based on the theory of optimal mass transport. The method is completely automated, does not require the use of predefined numerical features, and at the same time allows for easily interpretable visualizations of the most significant differences. Using this method, we demonstrate that the distribution pattern of peripheral chromatin in the nuclei of cells extracted from liver and thyroid specimens is associated with malignancy. We also show the method can correctly recover biologically interpretable and statistically significant differences in translocation imaging assays in a completely automated fashion.

摘要

现代显微镜成像设备能够提取出比肉眼观察更多的关于不同分子和蛋白质的亚细胞结构信息。长期以来,常用于定量分析从这些图像中提取的细胞的预定数值特征(描述符),对于区分细胞群体(例如,正常与患病)非常有用。然而,对获得的结果进行直接的视觉或生物学解释通常不是一项简单的任务。我们描述了一种基于最优质量传输理论的方法,用于检测和可视化细胞类之间的表型差异。该方法完全自动化,不需要使用预定义的数值特征,同时允许对最重要的差异进行易于解释的可视化。使用这种方法,我们证明了从肝脏和甲状腺标本中提取的细胞的核中周边染色质的分布模式与恶性肿瘤有关。我们还表明,该方法可以以完全自动化的方式正确恢复在易位成像测定中具有生物学意义和统计学意义的差异。

相似文献

9
Learning a cost function for microscope image segmentation.学习用于显微镜图像分割的成本函数。
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5506-9. doi: 10.1109/EMBC.2014.6944873.

引用本文的文献

8
Trajectories from Distribution-valued Functional Curves: A Unified Wasserstein Framework.分布值函数曲线的轨迹:一个统一的瓦瑟斯坦框架。
Med Image Comput Comput Assist Interv. 2020 Oct;12267:343-353. doi: 10.1007/978-3-030-59728-3_34. Epub 2020 Sep 29.
10
Radon Cumulative Distribution Transform Subspace Modeling for Image Classification.用于图像分类的氡累积分布变换子空间建模
J Math Imaging Vis. 2021 Nov;63(9):1185-1203. doi: 10.1007/s10851-021-01052-0. Epub 2021 Aug 5.

本文引用的文献

2
The quest for quantitative microscopy.定量显微镜的探索。
Nat Methods. 2012 Jul;9(7):627. doi: 10.1038/nmeth.2102.
5
An optimal transportation approach for nuclear structure-based pathology.基于核结构的病理学最优传输方法。
IEEE Trans Med Imaging. 2011 Mar;30(3):621-31. doi: 10.1109/TMI.2010.2089693. Epub 2010 Oct 25.
10
Nuclear structure in cancer cells.癌细胞中的核结构。
Nat Rev Cancer. 2004 Sep;4(9):677-87. doi: 10.1038/nrc1430.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验