Faculty of Biomedical Engineering, The Fourth Military Medical University, Xi'an 710032, China.
Clin Neurophysiol. 2011 Apr;122(4):656-63. doi: 10.1016/j.clinph.2010.09.018. Epub 2010 Oct 25.
Abnormal synchronisation change is closely associated with the process of seizure generation. The immediate and accurate detection of the changes in synchronisation may offer advantages in seizure prediction. Thus, we develop a phase synchronisation detection method for this purpose.
An analysis of phase synchronisation based on the complex Gaussian wavelet transform (PSW) was conducted to detect synchronised phases of long-lasting scalp electroencephalograph (EEG) recordings from eight epilepsy patients with intractable temporal lobe epilepsy. Four assessment indicators, namely sensitivity, maximum false prediction rate, seizure occurrence period and seizure prediction horizon were used to assess and compare PSW with the analysis of phase synchronisation, based on the Hilbert transform (PSH) and a random predictor Poisson process.
An obvious decrease was found upon phase synchronisation prior to visual detection of electroencephalograph seizure onset, which was consistent with the EEG mechanism in the ictal events. The results suggest that PSW is the most effective among the three prediction methods.
The results confirm that the analysis of phase synchronisation based on the complex Gaussian wavelet transform can be used for seizure prediction.
Phase synchronisation analysis may be a useful algorithm for clinical application in epileptic prediction.
异常同步变化与癫痫发作的发生过程密切相关。即时准确地检测到同步变化可能在癫痫预测方面具有优势。因此,我们为此开发了一种相位同步检测方法。
对 8 例难治性颞叶癫痫患者的长时间头皮脑电图(EEG)记录进行了基于复高斯小波变换(PSW)的相位同步分析,以检测同步相位。使用了 4 个评估指标,即敏感性、最大误报率、癫痫发作期和癫痫预测期,以评估和比较 PSW 与基于希尔伯特变换(PSH)和随机预测泊松过程的相位同步分析。
在视觉检测到脑电图癫痫发作之前,相位同步明显下降,这与癫痫发作期间的 EEG 机制一致。结果表明,在三种预测方法中,PSW 最为有效。
结果证实,基于复高斯小波变换的相位同步分析可用于癫痫预测。
相位同步分析可能是癫痫预测临床应用的有用算法。