Suppr超能文献

递归动力学对任务规则的内部表示:神经反应多样性的重要性。

Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses.

机构信息

Center for Theoretical Neuroscience, College of Physicians and Surgeons, Columbia University New York, NY, USA.

出版信息

Front Comput Neurosci. 2010 Oct 4;4:24. doi: 10.3389/fncom.2010.00024. eCollection 2010.

Abstract

Neural activity of behaving animals, especially in the prefrontal cortex, is highly heterogeneous, with selective responses to diverse aspects of the executed task. We propose a general model of recurrent neural networks that perform complex rule-based tasks, and we show that the diversity of neuronal responses plays a fundamental role when the behavioral responses are context-dependent. Specifically, we found that when the inner mental states encoding the task rules are represented by stable patterns of neural activity (attractors of the neural dynamics), the neurons must be selective for combinations of sensory stimuli and inner mental states. Such mixed selectivity is easily obtained by neurons that connect with random synaptic strengths both to the recurrent network and to neurons encoding sensory inputs. The number of randomly connected neurons needed to solve a task is on average only three times as large as the number of neurons needed in a network designed ad hoc. Moreover, the number of needed neurons grows only linearly with the number of task-relevant events and mental states, provided that each neuron responds to a large proportion of events (dense/distributed coding). A biologically realistic implementation of the model captures several aspects of the activity recorded from monkeys performing context-dependent tasks. Our findings explain the importance of the diversity of neural responses and provide us with simple and general principles for designing attractor neural networks that perform complex computation.

摘要

行为动物的神经活动,尤其是前额叶皮层的神经活动,具有高度的异质性,对执行任务的各个方面具有选择性反应。我们提出了一个用于执行复杂基于规则任务的递归神经网络的一般模型,并且我们表明,当行为反应依赖于上下文时,神经元反应的多样性起着根本作用。具体来说,我们发现,当编码任务规则的内部心理状态由稳定的神经活动模式(神经动力学的吸引子)表示时,神经元必须对感觉刺激和内部心理状态的组合具有选择性。这种混合选择性很容易通过与递归网络和编码感觉输入的神经元都具有随机突触强度的神经元获得。解决任务所需的随机连接神经元的数量平均仅为专门设计的网络所需神经元数量的三倍。此外,只要每个神经元对大部分事件(密集/分布式编码)做出反应,所需神经元的数量仅随与任务相关的事件和心理状态的数量呈线性增长。该模型的生物现实实现捕获了执行上下文相关任务的猴子记录的活动的几个方面。我们的发现解释了神经反应多样性的重要性,并为我们提供了设计执行复杂计算的吸引子神经网络的简单而通用的原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef0e/2967380/bf8f63cfc745/fncom-04-00024-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验