The Section of MCD Biology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX 78712, USA.
Development. 2010 Dec;137(24):4201-9. doi: 10.1242/dev.055046. Epub 2010 Nov 10.
The molecular mechanisms driving the conserved metazoan developmental shift referred to as the mid-blastula transition (MBT) remain mysterious. Typically, cleavage divisions give way to longer asynchronous cell cycles with the acquisition of a gap phase. In Drosophila, rapid synchronous nuclear divisions must pause at the MBT to allow the formation of a cellular blastoderm through a special form of cytokinesis termed cellularization. Drosophila Fragile X mental retardation protein (dFMRP; FMR1), a transcript-specific translational regulator, is required for cellularization. The role of FMRP has been most extensively studied in the nervous system because the loss of FMRP activity in neurons causes the misexpression of specific mRNAs required for synaptic plasticity, resulting in mental retardation and autism in humans. Here, we show that in the early embryo dFMRP associates specifically with Caprin, another transcript-specific translational regulator implicated in synaptic plasticity, and with eIF4G, a key regulator of translational initiation. dFMRP and Caprin collaborate to control the cell cycle at the MBT by directly mediating the normal repression of maternal Cyclin B mRNA and the activation of zygotic frühstart mRNA. These findings identify two new targets of dFMRP regulation and implicate conserved translational regulatory mechanisms in processes as diverse as learning, memory and early embryonic development.
驱动保守的后生动物发育转变的分子机制,即中胚层胚泡过渡(MBT),仍然是个谜。通常,卵裂分裂让位于更长的异步细胞周期,并获得间隙期。在果蝇中,快速同步的核分裂必须在 MBT 暂停,以通过一种称为胞质分裂的特殊形式形成细胞胚层。果蝇脆性 X 智力迟钝蛋白(dFMRP;FMR1)是一种转录特异性翻译调节剂,对于胞质分裂是必需的。FMRP 的作用在神经系统中得到了最广泛的研究,因为神经元中 FMRP 活性的丧失导致突触可塑性所需的特定 mRNA 的异常表达,从而导致人类的智力迟钝和自闭症。在这里,我们表明在早期胚胎中,dFMRP 特异性地与另一种参与突触可塑性的转录特异性翻译调节剂 Caprin 以及翻译起始的关键调节剂 eIF4G 结合。dFMRP 和 Caprin 通过直接介导母体 Cyclin B mRNA 的正常抑制和 zygotic frühstart mRNA 的激活,共同控制 MBT 中的细胞周期。这些发现确定了 dFMRP 调节的两个新靶标,并暗示保守的翻译调节机制参与了学习、记忆和早期胚胎发育等多样化的过程。