Department of Chemistry, University of Chicago, Chicago, IL 60637, USA.
Chem Soc Rev. 2011 Apr;40(4):2003-21. doi: 10.1039/c0cs00067a. Epub 2010 Nov 15.
The development of new catalytic methods to functionalize carbon-hydrogen (C-H) bonds continues to progress at a rapid pace due to the significant economic and environmental benefits of these transformations over traditional synthetic methods. In nature, enzymes catalyze regio- and stereoselective C-H bond functionalization using transformations ranging from hydroxylation to hydroalkylation under ambient reaction conditions. The efficiency of these enzymes relative to analogous chemical processes has led to their increased use as biocatalysts in preparative and industrial applications. Furthermore, unlike small molecule catalysts, enzymes can be systematically optimized via directed evolution for a particular application and can be expressed in vivo to augment the biosynthetic capability of living organisms. While a variety of technical challenges must still be overcome for practical application of many enzymes for C-H bond functionalization, continued research on natural enzymes and on novel artificial metalloenzymes will lead to improved synthetic processes for efficient synthesis of complex molecules. In this critical review, we discuss the most prevalent mechanistic strategies used by enzymes to functionalize non-acidic C-H bonds, the application and evolution of these enzymes for chemical synthesis, and a number of potential biosynthetic capabilities uniquely enabled by these powerful catalysts (110 references).
由于这些转化相对于传统合成方法具有显著的经济和环境效益,因此,用于功能化碳-氢键(C-H)的新型催化方法的开发仍然在快速发展。在自然界中,酶在环境反应条件下使用范围从羟化作用到氢烷基化作用的转化来催化区域和立体选择性的 C-H 键功能化。这些酶相对于类似的化学过程的效率导致它们在制备和工业应用中作为生物催化剂的使用增加。此外,与小分子催化剂不同,酶可以通过定向进化针对特定应用进行系统优化,并可以在体内表达以增强生物体的生物合成能力。虽然对于许多用于 C-H 键功能化的酶的实际应用仍然必须克服许多技术挑战,但对天然酶和新型人工金属酶的持续研究将导致改进的合成工艺,以有效合成复杂分子。在这篇重要的综述中,我们讨论了酶用于功能化非酸性 C-H 键的最常见的机制策略、这些酶在化学合成中的应用和进化,以及这些强大催化剂独特赋予的一些潜在的生物合成能力(110 篇参考文献)。