Department of Physics, Brandeis University, Waltham, MA, USA.
Phys Biol. 2010 Dec 9;7(4):045003. doi: 10.1088/1478-3975/7/4/045003.
The coat proteins of many viruses spontaneously form icosahedral capsids around nucleic acids or other polymers. Elucidating the role of the packaged polymer in capsid formation could promote biomedical efforts to block viral replication and enable use of capsids in nanomaterials applications. To this end, we perform Brownian dynamics on a coarse-grained model that describes the dynamics of icosahedral capsid assembly around a flexible polymer. We identify several mechanisms by which the polymer plays an active role in its encapsulation, including cooperative polymer-protein motions. These mechanisms are related to experimentally controllable parameters such as polymer length, protein concentration and solution conditions. Furthermore, the simulations demonstrate that assembly mechanisms are correlated with encapsulation efficiency, and we present a phase diagram that predicts assembly outcomes as a function of experimental parameters. We anticipate that our simulation results will provide a framework for designing in vitro assembly experiments on single-stranded RNA virus capsids.
许多病毒的外壳蛋白会在核酸或其他聚合物周围自发形成二十面体衣壳。阐明被包裹聚合物在衣壳形成中的作用,可以促进阻止病毒复制的生物医学研究,并使衣壳能够在纳米材料应用中使用。为此,我们对描述二十面体衣壳围绕柔性聚合物组装的粗粒化模型进行了布朗动力学模拟。我们确定了聚合物在封装中发挥积极作用的几种机制,包括协同的聚合物-蛋白运动。这些机制与实验可控制的参数有关,如聚合物长度、蛋白质浓度和溶液条件。此外,模拟表明组装机制与封装效率相关,我们提出了一个相图,预测了作为实验参数函数的组装结果。我们预计,我们的模拟结果将为设计单链 RNA 病毒衣壳的体外组装实验提供框架。