Institute of Biomedical Engineering, Karlsruhe Institute of Technology , Karlsruhe , Germany.
Institute of Applied and Numerical Mathematics, Karlsruhe Institute of Technology , Karlsruhe , Germany.
Front Bioeng Biotechnol. 2016 Jan 13;3:209. doi: 10.3389/fbioe.2015.00209. eCollection 2015.
Computational models of cardiac electrophysiology provided insights into arrhythmogenesis and paved the way toward tailored therapies in the last years. To fully leverage in silico models in future research, these models need to be adapted to reflect pathologies, genetic alterations, or pharmacological effects, however. A common approach is to leave the structure of established models unaltered and estimate the values of a set of parameters. Today's high-throughput patch clamp data acquisition methods require robust, unsupervised algorithms that estimate parameters both accurately and reliably. In this work, two classes of optimization approaches are evaluated: gradient-based trust-region-reflective and derivative-free particle swarm algorithms. Using synthetic input data and different ion current formulations from the Courtemanche et al. electrophysiological model of human atrial myocytes, we show that neither of the two schemes alone succeeds to meet all requirements. Sequential combination of the two algorithms did improve the performance to some extent but not satisfactorily. Thus, we propose a novel hybrid approach coupling the two algorithms in each iteration. This hybrid approach yielded very accurate estimates with minimal dependency on the initial guess using synthetic input data for which a ground truth parameter set exists. When applied to measured data, the hybrid approach yielded the best fit, again with minimal variation. Using the proposed algorithm, a single run is sufficient to estimate the parameters. The degree of superiority over the other investigated algorithms in terms of accuracy and robustness depended on the type of current. In contrast to the non-hybrid approaches, the proposed method proved to be optimal for data of arbitrary signal to noise ratio. The hybrid algorithm proposed in this work provides an important tool to integrate experimental data into computational models both accurately and robustly allowing to assess the often non-intuitive consequences of ion channel-level changes on higher levels of integration.
近年来,心脏电生理学的计算模型为心律失常的发生机制提供了深入的了解,并为量身定制的治疗方法铺平了道路。为了在未来的研究中充分利用计算机模型,这些模型需要适应反映病理学、遗传改变或药物作用的情况。一种常见的方法是保持已建立模型的结构不变,估计一组参数的值。如今,高通量膜片钳数据采集方法需要能够准确可靠地估计参数的强大、无监督的算法。在这项工作中,我们评估了两类优化方法:基于梯度的信赖域反射和无导数粒子群算法。使用合成输入数据和来自 Courtemanche 等人的人类心房肌细胞电生理学模型的不同离子电流公式,我们表明,这两种方案都不能单独满足所有要求。两种算法的顺序组合在一定程度上提高了性能,但并不令人满意。因此,我们提出了一种新的混合方法,在每次迭代中都将两种算法结合在一起。该混合方法在使用存在真实参数集的合成输入数据时,能够非常准确地进行估计,并且对初始猜测的依赖性最小。当应用于实测数据时,混合方法的拟合效果最好,变化最小。使用所提出的算法,仅需一次运行即可估计参数。在准确性和稳健性方面,与其他研究的算法相比,其优越性程度取决于电流的类型。与非混合方法相比,所提出的方法在任意信噪比的数据中被证明是最优的。本文提出的混合算法为将实验数据准确而稳健地整合到计算模型中提供了重要工具,从而可以评估离子通道水平变化对更高集成水平的通常非直观后果。