Suppr超能文献

通过极高的化疗药物载药量来实现高效能的工程化 PLGA 纳米颗粒。

Potent engineered PLGA nanoparticles by virtue of exceptionally high chemotherapeutic loadings.

机构信息

Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA.

出版信息

Nano Lett. 2011 Feb 9;11(2):808-13. doi: 10.1021/nl104117p. Epub 2011 Jan 25.

Abstract

Herein we report the fabrication of engineered poly(lactic acid-co-glycolic acid) nanoparticles via the PRINT (particle replication in nonwetting templates) process with high and efficient loadings of docetaxel, up to 40% (w/w) with encapsulation efficiencies >90%. The PRINT process enables independent control of particle properties leading to a higher degree of tailorability than traditional methods. Particles with 40% loading display better in vitro efficacy than particles with lower loadings and the clinical formulation of docetaxel, Taxotere.

摘要

本文报告了通过 PRINT(非湿模板中的粒子复制)工艺制备载多西紫杉醇的工程化聚(丙交酯-乙交酯)纳米粒,载药量高达 40%(w/w),包封效率>90%。PRINT 工艺能够独立控制颗粒性质,具有比传统方法更高的可定制性。载药量为 40%的颗粒显示出比低载药量颗粒和临床制剂多西紫杉醇(Taxotere)更好的体外疗效。

相似文献

1
Potent engineered PLGA nanoparticles by virtue of exceptionally high chemotherapeutic loadings.
Nano Lett. 2011 Feb 9;11(2):808-13. doi: 10.1021/nl104117p. Epub 2011 Jan 25.
2
Docetaxel-Loaded PLGA Nanoparticles Improve Efficacy in Taxane-Resistant Triple-Negative Breast Cancer.
Nano Lett. 2017 Jan 11;17(1):242-248. doi: 10.1021/acs.nanolett.6b03971. Epub 2016 Dec 22.
3
Practical preparation procedures for docetaxel-loaded nanoparticles using polylactic acid-co-glycolic acid.
Int J Nanomedicine. 2011;6:2225-34. doi: 10.2147/IJN.S24547. Epub 2011 Oct 7.
4
Optimization of parameters for preparation of docetaxel-loaded PLGA nanoparticles by nanoprecipitation method.
J Huazhong Univ Sci Technolog Med Sci. 2013 Oct;33(5):754-758. doi: 10.1007/s11596-013-1192-x. Epub 2013 Oct 20.
6
Synthesis and in vitro studies of PLGA-DTX nanoconjugate as potential drug delivery vehicle for oral cancer.
Int J Nanomedicine. 2018 Mar 15;13(T-NANO 2014 Abstracts):67-69. doi: 10.2147/IJN.S124995. eCollection 2018.
7
Formulation and in vitro characterization of Eudragit® L100 and Eudragit® L100-PLGA nanoparticles containing diclofenac sodium.
AAPS PharmSciTech. 2010 Sep;11(3):1250-6. doi: 10.1208/s12249-010-9489-6. Epub 2010 Aug 10.
8
Loading and release of amphotericin-B from biodegradable poly(lactic-co-glycolic acid) nanoparticles.
J Biomed Nanotechnol. 2011 Feb;7(1):118-20. doi: 10.1166/jbn.2011.1230.
10
Poly(lactic-co-glycolic) Acid/Solutol HS15-Based Nanoparticles for Docetaxel Delivery.
J Nanosci Nanotechnol. 2016 Feb;16(2):1433-6. doi: 10.1166/jnn.2016.11918.

引用本文的文献

2
Transepithelial transport of nanoparticles in oral drug delivery: From the perspective of surface and holistic property modulation.
Acta Pharm Sin B. 2024 Sep;14(9):3876-3900. doi: 10.1016/j.apsb.2024.06.015. Epub 2024 Jun 22.
3
Toward the scale-up production of polymeric nanotherapeutics for cancer clinical trials.
Nano Today. 2024 Jun;56. doi: 10.1016/j.nantod.2024.102314. Epub 2024 May 18.
5
Therapeutic Peptides Are Preferentially Solubilized in Specific Microenvironments within PEG-PLGA Polymer Nanoparticles.
Nano Lett. 2024 Feb 14;24(6):2011-2017. doi: 10.1021/acs.nanolett.3c04558. Epub 2024 Feb 2.
6
Conjugated Nanoparticles for Solid Tumor Theranostics: Unraveling the Interplay of Known and Unknown Factors.
ACS Omega. 2023 Oct 5;8(41):37654-37684. doi: 10.1021/acsomega.3c05069. eCollection 2023 Oct 17.
9
Preparation of Surface-Supported Polylactide Spherical-Cap Particles.
Langmuir. 2022 Dec 6;38(48):14596-14606. doi: 10.1021/acs.langmuir.2c01950. Epub 2022 Nov 17.
10
Recent Advances in the Surface Functionalization of PLGA-Based Nanomedicines.
Nanomaterials (Basel). 2022 Jan 22;12(3):354. doi: 10.3390/nano12030354.

本文引用的文献

2
Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes.
J Control Release. 2010 Apr 2;143(1):2-12. doi: 10.1016/j.jconrel.2009.11.012. Epub 2009 Nov 17.
3
The hydrogel template method for fabrication of homogeneous nano/microparticles.
J Control Release. 2010 Feb 15;141(3):314-9. doi: 10.1016/j.jconrel.2009.09.032. Epub 2009 Oct 12.
4
NGR-modified micelles enhance their interaction with CD13-overexpressing tumor and endothelial cells.
J Control Release. 2009 Oct 1;139(1):56-62. doi: 10.1016/j.jconrel.2009.05.030. Epub 2009 May 24.
5
The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity.
Nanomedicine. 2010 Feb;6(1):170-8. doi: 10.1016/j.nano.2009.05.004. Epub 2009 May 15.
6
Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs.
J Control Release. 2009 Dec 16;140(3):294-300. doi: 10.1016/j.jconrel.2009.04.024. Epub 2009 May 4.
8
Impact of nanotechnology on drug delivery.
ACS Nano. 2009 Jan 27;3(1):16-20. doi: 10.1021/nn900002m.
9
PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery.
Biomaterials. 2009 Mar;30(8):1627-34. doi: 10.1016/j.biomaterials.2008.12.013. Epub 2008 Dec 25.
10
The effect of particle design on cellular internalization pathways.
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11613-8. doi: 10.1073/pnas.0801763105. Epub 2008 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验