Institut für Physikalische Chemie, Friedrich-Schiller-Universität Jena, Jena, Germany.
Lab Chip. 2011 Mar 21;11(6):1013-21. doi: 10.1039/c0lc00536c. Epub 2011 Jan 31.
The interest in a fast, high specific and reliable detection method for bacteria identification is increasing. We will show that the application of vibrational spectroscopy is feasible for the validation of bacteria in microfluidic devices. For this purpose, reproducible and specific spectral pattern as well as the establishment of large databases are essential for statistical analysis. Therefore, short recording times are beneficial concerning the time aspect of fast identification. We will demonstrate that the requirements can be fulfilled by measuring ultrasonic busted bacteria by means of microfluidic lab-on-a-chip based SERS. With the applied sample preparation, high specificity and reproducibility of the spectra are achieved. Taking advantage of the SERS enhancement, the spectral recording time is reduced to 1 s and a database of 11,200 spectra is established for a model system E. coli including nine different strains. The validation of the bacteria on strain level is achieved accomplishing SVM accuracies of 92%. Within this contribution the potential of our approach of bacterial identification for future application is discussed, focusing on the time-benefit and the combination with other microfluidic applications.
人们对快速、高特异性和可靠的细菌鉴定检测方法越来越感兴趣。我们将展示,振动光谱学的应用对于微流控设备中细菌的验证是可行的。为此,对于统计分析来说,重现性和特异性的光谱模式以及大型数据库的建立是必不可少的。因此,从快速鉴定的时间方面来看,较短的记录时间是有益的。我们将证明,通过使用基于微流控芯片的 SERS 测量超声破碎细菌,可以满足这些要求。通过应用这种样品制备方法,实现了光谱的高特异性和重现性。利用 SERS 增强,光谱记录时间缩短至 1 秒,并为包括 9 种不同菌株的模型系统大肠杆菌建立了一个 11200 个光谱的数据库。通过完成 SVM 准确率为 92%,实现了对细菌的菌株水平的验证。在本研究中,我们还讨论了这种细菌鉴定方法在未来应用中的潜力,重点是时间效益以及与其他微流控应用的结合。