Suppr超能文献

基于规则的多细胞生物系统模拟——建模技术综述

Rule-Based Simulation of Multi-Cellular Biological Systems-A Review of Modeling Techniques.

作者信息

Hwang Minki, Garbey Marc, Berceli Scott A, Tran-Son-Tay Roger

机构信息

Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA.

出版信息

Cell Mol Bioeng. 2009 Sep;2(3):285-294. doi: 10.1007/s12195-009-0078-2.

Abstract

Emergent behaviors of multi-cellular biological systems (MCBS) result from the behaviors of each individual cells and their interactions with other cells and with the environment. Modeling MCBS requires incorporating these complex interactions among the individual cells and the environment. Modeling approaches for MCBS can be grouped into two categories: continuum models and cell-based models. Continuum models usually take the form of partial differential equations, and the model equations provide insight into the relationship among the components in the system. Cell-based models simulate each individual cell behavior and interactions among them enabling the observation of the emergent system behavior. This review focuses on the cell-based models of MCBS, and especially, the technical aspect of the rule-based simulation method for MCBS is reviewed. How to implement the cell behaviors and the interactions with other cells and with the environment into the computational domain is discussed. The cell behaviors reviewed in this paper are division, migration, apoptosis/necrosis, and differentiation. The environmental factors such as extracellular matrix, chemicals, microvasculature, and forces are also discussed. Application examples of these cell behaviors and interactions are presented.

摘要

多细胞生物系统(MCBS)的涌现行为源于每个单个细胞的行为及其与其他细胞以及与环境的相互作用。对MCBS进行建模需要纳入单个细胞与环境之间的这些复杂相互作用。MCBS的建模方法可分为两类:连续介质模型和基于细胞的模型。连续介质模型通常采用偏微分方程的形式,模型方程能深入了解系统中各组分之间的关系。基于细胞的模型模拟每个单个细胞的行为及其相互作用,从而能够观察到涌现的系统行为。本综述聚焦于MCBS的基于细胞的模型,特别是对MCBS基于规则的模拟方法的技术层面进行了综述。讨论了如何将细胞行为以及与其他细胞和与环境的相互作用在计算域中实现。本文所综述的细胞行为包括分裂、迁移、凋亡/坏死和分化。还讨论了诸如细胞外基质、化学物质、微脉管系统和力等环境因素。给出了这些细胞行为和相互作用的应用实例。

相似文献

1
Rule-Based Simulation of Multi-Cellular Biological Systems-A Review of Modeling Techniques.
Cell Mol Bioeng. 2009 Sep;2(3):285-294. doi: 10.1007/s12195-009-0078-2.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
Rule-based multi-level modeling of cell biological systems.
BMC Syst Biol. 2011 Oct 17;5:166. doi: 10.1186/1752-0509-5-166.
4
Stem Cell Fate Decision Making: Modeling Approaches.
ACS Biomater Sci Eng. 2017 Nov 13;3(11):2702-2711. doi: 10.1021/acsbiomaterials.6b00606. Epub 2017 Feb 1.
7
Mathematical modelling of cell migration.
Essays Biochem. 2019 Oct 31;63(5):631-637. doi: 10.1042/EBC20190020.
8
A Simple Framework for Agent-Based Modeling with Extracellular Matrix.
Bull Math Biol. 2025 Feb 12;87(3):43. doi: 10.1007/s11538-024-01408-8.

引用本文的文献

1
A Game of Life with dormancy.
Proc Biol Sci. 2025 Jan;292(2039):20242543. doi: 10.1098/rspb.2024.2543. Epub 2025 Jan 29.
3
Fibre crosslinking drives the emergence of order in a three-dimensional dynamical network model.
R Soc Open Sci. 2024 Jan 31;11(1):231456. doi: 10.1098/rsos.231456. eCollection 2024 Jan.
4
Bridging the gap between mechanistic biological models and machine learning surrogates.
PLoS Comput Biol. 2023 Apr 20;19(4):e1010988. doi: 10.1371/journal.pcbi.1010988. eCollection 2023 Apr.
5
A feedback mechanism controls rDNA copy number evolution in yeast independently of natural selection.
PLoS One. 2022 Sep 1;17(9):e0272878. doi: 10.1371/journal.pone.0272878. eCollection 2022.
6
BioSANS: A software package for symbolic and numeric biological simulation.
PLoS One. 2022 Apr 18;17(4):e0256409. doi: 10.1371/journal.pone.0256409. eCollection 2022.
7
Data-driven learning how oncogenic gene expression locally alters heterocellular networks.
Nat Commun. 2022 Apr 13;13(1):1986. doi: 10.1038/s41467-022-29636-3.
8
Multiscale Computational Modeling of Vascular Adaptation: A Systems Biology Approach Using Agent-Based Models.
Front Bioeng Biotechnol. 2021 Nov 2;9:744560. doi: 10.3389/fbioe.2021.744560. eCollection 2021.
9
Shaping the Organ: A Biologist Guide to Quantitative Models of Plant Morphogenesis.
Front Plant Sci. 2021 Oct 5;12:746183. doi: 10.3389/fpls.2021.746183. eCollection 2021.
10
How and why to build a mathematical model: A case study using prion aggregation.
J Biol Chem. 2020 Apr 10;295(15):5022-5035. doi: 10.1074/jbc.REV119.009851. Epub 2020 Jan 31.

本文引用的文献

1
2
A quantitative cellular automaton model of in vitro multicellular spheroid tumour growth.
J Theor Biol. 2009 May 21;258(2):165-78. doi: 10.1016/j.jtbi.2009.02.008. Epub 2009 Feb 25.
3
Agent-based model of therapeutic adipose-derived stromal cell trafficking during ischemia predicts ability to roll on P-selectin.
PLoS Comput Biol. 2009 Feb;5(2):e1000294. doi: 10.1371/journal.pcbi.1000294. Epub 2009 Feb 27.
5
Essential operating principles for tumor spheroid growth.
BMC Syst Biol. 2008 Dec 23;2:110. doi: 10.1186/1752-0509-2-110.
6
A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach.
Ann Biomed Eng. 2009 Jan;37(1):129-45. doi: 10.1007/s10439-008-9594-9. Epub 2008 Nov 15.
7
Characterizing emergent properties of immunological systems with multi-cellular rule-based computational modeling.
Trends Immunol. 2008 Dec;29(12):589-99. doi: 10.1016/j.it.2008.08.006. Epub 2008 Oct 27.
8
Individual-based and continuum models of growing cell populations: a comparison.
J Math Biol. 2009 Apr;58(4-5):657-87. doi: 10.1007/s00285-008-0212-0. Epub 2008 Oct 8.
9
Multiscale agent-based cancer modeling.
J Math Biol. 2009 Apr;58(4-5):545-59. doi: 10.1007/s00285-008-0211-1. Epub 2008 Sep 12.
10
A hybrid agent-based approach for modeling microbiological systems.
J Theor Biol. 2008 Nov 21;255(2):163-75. doi: 10.1016/j.jtbi.2008.08.008. Epub 2008 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验