Suppr超能文献

深度分支的ANME-1c古菌在甲烷厌氧氧化的温度上限下生长。

Deep-branching ANME-1c archaea grow at the upper temperature limit of anaerobic oxidation of methane.

作者信息

Benito Merino David, Zehnle Hanna, Teske Andreas, Wegener Gunter

机构信息

Max Planck Institute for Marine Microbiology, Bremen, Germany.

Faculty of Geosciences, University of Bremen, Bremen, Germany.

出版信息

Front Microbiol. 2022 Sep 23;13:988871. doi: 10.3389/fmicb.2022.988871. eCollection 2022.

Abstract

In seafloor sediments, the anaerobic oxidation of methane (AOM) consumes most of the methane formed in anoxic layers, preventing this greenhouse gas from reaching the water column and finally the atmosphere. AOM is performed by syntrophic consortia of specific anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). Cultures with diverse AOM partners exist at temperatures between 12°C and 60°C. Here, from hydrothermally heated sediments of the Guaymas Basin, we cultured deep-branching ANME-1c that grow in syntrophic consortia with at 70°C. Like all ANME, ANME-1c oxidize methane using the methanogenesis pathway in reverse. As an uncommon feature, ANME-1c encode a nickel-iron hydrogenase. This hydrogenase has low expression during AOM and the partner lack hydrogen-consuming hydrogenases. Therefore, it is unlikely that the partners exchange hydrogen during AOM. ANME-1c also does not consume hydrogen for methane formation, disputing a recent hypothesis on facultative methanogenesis. We hypothesize that the ANME-1c hydrogenase might have been present in the common ancestor of ANME-1 but lost its central metabolic function in ANME-1c archaea. For potential direct interspecies electron transfer (DIET), both partners encode and express genes coding for extracellular appendages and multiheme cytochromes. encode and express an extracellular pentaheme cytochrome with high similarity to cytochromes of other syntrophic sulfate-reducing partner bacteria. ANME-1c might associate specifically to but their co-occurrence is so far only documented for heated sediments of the Gulf of California. However, in the deep seafloor, sulfate-methane interphases appear at temperatures up to 80°C, suggesting these as potential habitats for the partnership of ANME-1c and .

摘要

在海底沉积物中,甲烷的厌氧氧化(AOM)消耗了缺氧层中形成的大部分甲烷,从而阻止这种温室气体进入水柱并最终进入大气。AOM由特定的厌氧甲烷氧化古菌(ANME)和硫酸盐还原细菌(SRB)的共生聚集体进行。具有不同AOM伙伴的培养物存在于12°C至60°C的温度范围内。在这里,我们从瓜伊马斯盆地的热液加热沉积物中培养出了深分支的ANME-1c,它在70°C下与 形成共生聚集体生长。与所有ANME一样,ANME-1c利用反向产甲烷途径氧化甲烷。一个不寻常的特征是,ANME-1c编码一种镍铁氢化酶。这种氢化酶在AOM过程中表达水平较低,且伙伴 缺乏消耗氢气的氢化酶。因此,伙伴之间在AOM过程中不太可能交换氢气。ANME-1c也不会消耗氢气来形成甲烷,这对最近关于兼性产甲烷的假设提出了质疑。我们假设ANME-1c氢化酶可能存在于ANME-1的共同祖先中,但在ANME-1c古菌中失去了其核心代谢功能。对于潜在的直接种间电子转移(DIET),两个伙伴都编码并表达编码细胞外附属物和多血红素细胞色素的基因。 编码并表达一种与其他共生硫酸盐还原伙伴细菌的细胞色素高度相似的细胞外五血红素细胞色素。ANME-1c可能与 特异性结合,但到目前为止,它们的共存仅在加利福尼亚湾的加热沉积物中有记录。然而,在深海海底,硫酸盐 - 甲烷界面出现在高达80°C的温度下,这表明这些是ANME-1c和 的伙伴关系的潜在栖息地。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b96d/9539880/a16e18b2c73d/fmicb-13-988871-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验