Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2455-60. doi: 10.1073/pnas.0910866107. Epub 2010 Jan 25.
Cyanobacterial RuBisCO is sequestered in large, icosahedral, protein-bounded microcompartments called carboxysomes. Bicarbonate is pumped into the cytosol, diffuses into the carboxysome through small pores in its shell, and is then converted to CO(2) by carbonic anhydrase (CA) prior to fixation. Paradoxically, many beta-cyanobacteria, including Thermosynechococcus elongatus BP-1, lack the conventional carboxysomal beta-CA, ccaA. The N-terminal domain of the carboxysomal protein CcmM is homologous to gamma-CA from Methanosarcina thermophila (Cam) but recombinant CcmM derived from ccaA-containing cyanobacteria show no CA activity. We demonstrate here that either full length CcmM from T. elongatus, or a construct truncated after 209 residues (CcmM209), is active as a CA-the first catalytically active bacterial gamma-CA reported. The 2.0 A structure of CcmM209 reveals a trimeric, left-handed beta-helix structure that closely resembles Cam, except that residues 198-207 form a third alpha-helix stabilized by an essential Cys194-Cys200 disulfide bond. Deleting residues 194-209 (CcmM193) results in an inactive protein whose 1.1 A structure shows disordering of the N- and C-termini, and reorganization of the trimeric interface and active site. Under reducing conditions, CcmM209 is similarly partially disordered and inactive as a CA. CcmM protein in fresh E. coli cell extracts is inactive, implying that the cellular reducing machinery can reduce and inactivate CcmM, while diamide, a thiol oxidizing agent, activates the enzyme. Thus, like membrane-bound eukaryotic cellular compartments, the beta-carboxysome appears to be able to maintain an oxidizing interior by precluding the entry of thioredoxin and other endogenous reducing agents.
蓝细菌 Rubisco 被隔离在大型、二十面体、由蛋白质包围的微隔室内,称为羧化体。碳酸氢盐被泵入细胞质,通过外壳上的小孔扩散到羧化体中,然后在被固定之前由碳酸酐酶 (CA) 转化为 CO(2)。矛盾的是,许多β-蓝细菌,包括 elongatus BP-1,缺乏传统的羧化体β-CA,ccaA。羧化体蛋白 CcmM 的 N 端结构域与 Methanosarcina thermophila (Cam) 的γ-CA 同源,但来自含有 ccaA 的蓝细菌的重组 CcmM 没有 CA 活性。我们在这里证明,来自 elongatus 的全长 CcmM 或在 209 个残基后截断的构建体 (CcmM209) 都具有 CA 活性——这是第一个报道的具有催化活性的细菌γ-CA。CcmM209 的 2.0 A 结构揭示了一个三聚体、左手β-螺旋结构,与 Cam 非常相似,只是残基 198-207 形成第三个α-螺旋,由一个必需的 Cys194-Cys200 二硫键稳定。删除残基 194-207(CcmM193) 会导致无活性的蛋白质,其 1.1 A 结构显示 N-和 C-末端的无序化,以及三聚体界面和活性位点的重组。在还原条件下,CcmM209 作为 CA 也同样部分无序和无活性。新鲜的 E. coli 细胞提取物中的 CcmM 蛋白没有活性,这意味着细胞还原机制可以还原和失活 CcmM,而二酰胺,一种硫醇氧化剂,可激活该酶。因此,与膜结合的真核细胞隔室一样,β-羧化体似乎能够通过排除硫氧还蛋白和其他内源性还原剂来维持氧化内部。