Suppr超能文献

羧酶体γ-碳酸酐酶 CcmM 的氧化激活的结构基础。

Structural basis of the oxidative activation of the carboxysomal gamma-carbonic anhydrase, CcmM.

机构信息

Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.

出版信息

Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2455-60. doi: 10.1073/pnas.0910866107. Epub 2010 Jan 25.

Abstract

Cyanobacterial RuBisCO is sequestered in large, icosahedral, protein-bounded microcompartments called carboxysomes. Bicarbonate is pumped into the cytosol, diffuses into the carboxysome through small pores in its shell, and is then converted to CO(2) by carbonic anhydrase (CA) prior to fixation. Paradoxically, many beta-cyanobacteria, including Thermosynechococcus elongatus BP-1, lack the conventional carboxysomal beta-CA, ccaA. The N-terminal domain of the carboxysomal protein CcmM is homologous to gamma-CA from Methanosarcina thermophila (Cam) but recombinant CcmM derived from ccaA-containing cyanobacteria show no CA activity. We demonstrate here that either full length CcmM from T. elongatus, or a construct truncated after 209 residues (CcmM209), is active as a CA-the first catalytically active bacterial gamma-CA reported. The 2.0 A structure of CcmM209 reveals a trimeric, left-handed beta-helix structure that closely resembles Cam, except that residues 198-207 form a third alpha-helix stabilized by an essential Cys194-Cys200 disulfide bond. Deleting residues 194-209 (CcmM193) results in an inactive protein whose 1.1 A structure shows disordering of the N- and C-termini, and reorganization of the trimeric interface and active site. Under reducing conditions, CcmM209 is similarly partially disordered and inactive as a CA. CcmM protein in fresh E. coli cell extracts is inactive, implying that the cellular reducing machinery can reduce and inactivate CcmM, while diamide, a thiol oxidizing agent, activates the enzyme. Thus, like membrane-bound eukaryotic cellular compartments, the beta-carboxysome appears to be able to maintain an oxidizing interior by precluding the entry of thioredoxin and other endogenous reducing agents.

摘要

蓝细菌 Rubisco 被隔离在大型、二十面体、由蛋白质包围的微隔室内,称为羧化体。碳酸氢盐被泵入细胞质,通过外壳上的小孔扩散到羧化体中,然后在被固定之前由碳酸酐酶 (CA) 转化为 CO(2)。矛盾的是,许多β-蓝细菌,包括 elongatus BP-1,缺乏传统的羧化体β-CA,ccaA。羧化体蛋白 CcmM 的 N 端结构域与 Methanosarcina thermophila (Cam) 的γ-CA 同源,但来自含有 ccaA 的蓝细菌的重组 CcmM 没有 CA 活性。我们在这里证明,来自 elongatus 的全长 CcmM 或在 209 个残基后截断的构建体 (CcmM209) 都具有 CA 活性——这是第一个报道的具有催化活性的细菌γ-CA。CcmM209 的 2.0 A 结构揭示了一个三聚体、左手β-螺旋结构,与 Cam 非常相似,只是残基 198-207 形成第三个α-螺旋,由一个必需的 Cys194-Cys200 二硫键稳定。删除残基 194-207(CcmM193) 会导致无活性的蛋白质,其 1.1 A 结构显示 N-和 C-末端的无序化,以及三聚体界面和活性位点的重组。在还原条件下,CcmM209 作为 CA 也同样部分无序和无活性。新鲜的 E. coli 细胞提取物中的 CcmM 蛋白没有活性,这意味着细胞还原机制可以还原和失活 CcmM,而二酰胺,一种硫醇氧化剂,可激活该酶。因此,与膜结合的真核细胞隔室一样,β-羧化体似乎能够通过排除硫氧还蛋白和其他内源性还原剂来维持氧化内部。

相似文献

2
Carboxysomal carbonic anhydrases.羧酶体碳酸酐酶
Subcell Biochem. 2014;75:89-103. doi: 10.1007/978-94-007-7359-2_6.

引用本文的文献

1
9
α-Carboxysome Size Is Controlled by the Disordered Scaffold Protein CsoS2.α-羧基体大小受无序支架蛋白 CsoS2 控制。
Biochemistry. 2024 Jan 16;63(2):219-229. doi: 10.1021/acs.biochem.3c00403. Epub 2023 Dec 12.
10
Identification of a carbonic anhydrase-Rubisco complex within the alpha-carboxysome.鉴定在α-羧基体中存在碳酸酐酶- Rubisco 复合物。
Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2308600120. doi: 10.1073/pnas.2308600120. Epub 2023 Oct 20.

本文引用的文献

3
Structure and function of Rubisco.核酮糖-1,5-二磷酸羧化酶/加氧酶的结构与功能。
Plant Physiol Biochem. 2008 Mar;46(3):275-91. doi: 10.1016/j.plaphy.2008.01.001. Epub 2008 Jan 12.
4
Atomic-level models of the bacterial carboxysome shell.细菌羧基体外壳的原子水平模型。
Science. 2008 Feb 22;319(5866):1083-6. doi: 10.1126/science.1151458.
5
Genome evolution in cyanobacteria: the stable core and the variable shell.蓝藻的基因组进化:稳定的核心与可变的外壳。
Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2510-5. doi: 10.1073/pnas.0711165105. Epub 2008 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验