Suppr超能文献

磁共振成像中脑微出血的半自动检测。

Semiautomated detection of cerebral microbleeds in magnetic resonance images.

机构信息

Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA.

出版信息

Magn Reson Imaging. 2011 Jul;29(6):844-52. doi: 10.1016/j.mri.2011.02.028. Epub 2011 May 14.

Abstract

Cerebral microbleeds (CMBs) are increasingly being recognized as an important biomarker for neurovascular diseases. So far, all attempts to count and quantify them have relied on manual methods that are time-consuming and can be inconsistent. A technique is presented that semiautomatically identifies CMBs in susceptibility weighted images (SWI). This will both reduce the processing time and increase the consistency over manual methods. This technique relies on a statistical thresholding algorithm to identify hypointensities within the image. A support vector machine (SVM) supervised learning classifier is then used to separate true CMB from other marked hypointensities. The classifier relies on identifying features such as shape and signal intensity to identify true CMBs. The results from the automated section are then subject to manual review to remove false-positives. This technique is able to achieve a sensitivity of 81.7% compared with the gold standard of manual review and consensus by multiple reviewers. In subjects with many CMBs, this presents a faster alternative to current manual techniques at the cost of some lost sensitivity.

摘要

脑微出血 (CMBs) 越来越被认为是神经血管疾病的一个重要生物标志物。到目前为止,所有对其进行计数和量化的尝试都依赖于耗时且不一致的手动方法。本文提出了一种在磁化率加权成像 (SWI) 中半自动识别 CMB 的技术。这将减少处理时间并提高与手动方法的一致性。该技术依赖于统计阈值算法来识别图像中的低信号强度区。然后使用支持向量机 (SVM) 监督学习分类器将真正的 CMB 与其他标记的低信号强度区分开来。分类器依赖于识别形状和信号强度等特征来识别真正的 CMB。然后对自动分割的结果进行手动复查以去除假阳性。与手动复查和多位审阅者的共识这一金标准相比,该技术的灵敏度达到 81.7%。在 CMB 较多的患者中,与当前的手动技术相比,该技术提供了一种更快的替代方法,但代价是一些敏感性的损失。

相似文献

1
Semiautomated detection of cerebral microbleeds in magnetic resonance images.
Magn Reson Imaging. 2011 Jul;29(6):844-52. doi: 10.1016/j.mri.2011.02.028. Epub 2011 May 14.
2
Computer-aided detection of cerebral microbleeds in susceptibility-weighted imaging.
Comput Med Imaging Graph. 2015 Dec;46 Pt 3:269-76. doi: 10.1016/j.compmedimag.2015.10.001. Epub 2015 Oct 24.
4
Naïve Bayes classifier assisted automated detection of cerebral microbleeds in susceptibility-weighted imaging brain images.
Biochem Cell Biol. 2023 Dec 1;101(6):562-573. doi: 10.1139/bcb-2023-0156. Epub 2023 Aug 28.
5
Automated detection of cerebral microbleeds in patients with Traumatic Brain Injury.
Neuroimage Clin. 2016 Jul 2;12:241-51. doi: 10.1016/j.nicl.2016.07.002. eCollection 2016.
6
Automatic cerebral microbleeds detection from MR images via Independent Subspace Analysis based hierarchical features.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:7933-6. doi: 10.1109/EMBC.2015.7320232.
7
Comparison of ESWAN, SWI-SPGR, and 2D T2*-weighted GRE sequence for depicting cerebral microbleeds.
Clin Neuroradiol. 2013 Jun;23(2):121-7. doi: 10.1007/s00062-012-0185-7. Epub 2012 Dec 3.
8
Automated detection of cerebral microbleeds in MR images: A two-stage deep learning approach.
Neuroimage Clin. 2020;28:102464. doi: 10.1016/j.nicl.2020.102464. Epub 2020 Oct 13.
9
Improved cerebral microbleeds detection using their magnetic signature on T2*-phase-contrast: A comparison study in a clinical setting.
Neuroimage Clin. 2016 Aug 9;15:274-283. doi: 10.1016/j.nicl.2016.08.005. eCollection 2017.
10
Toward automated detection of microbleeds with anatomical scale localization using deep learning.
Med Image Anal. 2025 Apr;101:103415. doi: 10.1016/j.media.2024.103415. Epub 2024 Nov 30.

引用本文的文献

1
Automatic Detection and Classification of Cerebral Microbleeds Using 3D CNN.
J Image Graph. 2025;13(3):275-285. doi: 10.18178/joig.13.3.275-285. Epub 2025 Jun 12.
2
3
GLAPAL-H: Global, Local, And Parts Aware Learner for Hydrocephalus Infection Diagnosis in Low-Field MRI.
medRxiv. 2025 Jun 6:2025.05.14.25327461. doi: 10.1101/2025.05.14.25327461.
4
A Novel Detection and Classification Framework for Diagnosing of Cerebral Microbleeds Using Transformer and Language.
Bioengineering (Basel). 2024 Sep 30;11(10):993. doi: 10.3390/bioengineering11100993.
5
Deep learning-assisted IoMT framework for cerebral microbleed detection.
Heliyon. 2023 Nov 25;9(12):e22879. doi: 10.1016/j.heliyon.2023.e22879. eCollection 2023 Dec.
6
Using transfer learning for automated microbleed segmentation.
Front Neuroimaging. 2022 Aug 26;1:940849. doi: 10.3389/fnimg.2022.940849. eCollection 2022.
7
Automated detection of cerebral microbleeds on MR images using knowledge distillation framework.
Front Neuroinform. 2023 Jul 10;17:1204186. doi: 10.3389/fninf.2023.1204186. eCollection 2023.
8
Infection diagnosis in hydrocephalus CT images: a domain enriched attention learning approach.
J Neural Eng. 2023 Jun 16;20(3). doi: 10.1088/1741-2552/acd9ee.
9
Diagnosis of cerebral microbleed via VGG and extreme learning machine trained by Gaussian map bat algorithm.
J Ambient Intell Humaniz Comput. 2023 May;14(5):5395-5406. doi: 10.1007/s12652-020-01789-3. Epub 2020 Feb 24.
10
Quantitative susceptibility mapping as an imaging biomarker for Alzheimer's disease: The expectations and limitations.
Front Neurosci. 2022 Aug 5;16:938092. doi: 10.3389/fnins.2022.938092. eCollection 2022.

本文引用的文献

3
Comparison of AdaBoost and support vector machines for detecting Alzheimer's disease through automated hippocampal segmentation.
IEEE Trans Med Imaging. 2010 Jan;29(1):30-43. doi: 10.1109/TMI.2009.2021941. Epub 2009 May 19.
4
Microbleeds versus macrobleeds: evidence for distinct entities.
Stroke. 2009 Jul;40(7):2382-6. doi: 10.1161/STROKEAHA.109.548974. Epub 2009 May 14.
5
Serial susceptibility weighted MRI measures brain iron and microbleeds in dementia.
J Alzheimers Dis. 2009;17(3):599-609. doi: 10.3233/JAD-2009-1073.
7
Cerebral microbleeds: a guide to detection and interpretation.
Lancet Neurol. 2009 Feb;8(2):165-74. doi: 10.1016/S1474-4422(09)70013-4.
8
improving interrater agreement about brain microbleeds: development of the Brain Observer MicroBleed Scale (BOMBS).
Stroke. 2009 Jan;40(1):94-9. doi: 10.1161/STROKEAHA.108.526996. Epub 2008 Nov 13.
9
MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength.
AJNR Am J Neuroradiol. 2009 Feb;30(2):338-43. doi: 10.3174/ajnr.A1355. Epub 2008 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验