Suppr超能文献

磁共振成像中脑微出血的半自动检测。

Semiautomated detection of cerebral microbleeds in magnetic resonance images.

机构信息

Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA.

出版信息

Magn Reson Imaging. 2011 Jul;29(6):844-52. doi: 10.1016/j.mri.2011.02.028. Epub 2011 May 14.

Abstract

Cerebral microbleeds (CMBs) are increasingly being recognized as an important biomarker for neurovascular diseases. So far, all attempts to count and quantify them have relied on manual methods that are time-consuming and can be inconsistent. A technique is presented that semiautomatically identifies CMBs in susceptibility weighted images (SWI). This will both reduce the processing time and increase the consistency over manual methods. This technique relies on a statistical thresholding algorithm to identify hypointensities within the image. A support vector machine (SVM) supervised learning classifier is then used to separate true CMB from other marked hypointensities. The classifier relies on identifying features such as shape and signal intensity to identify true CMBs. The results from the automated section are then subject to manual review to remove false-positives. This technique is able to achieve a sensitivity of 81.7% compared with the gold standard of manual review and consensus by multiple reviewers. In subjects with many CMBs, this presents a faster alternative to current manual techniques at the cost of some lost sensitivity.

摘要

脑微出血 (CMBs) 越来越被认为是神经血管疾病的一个重要生物标志物。到目前为止,所有对其进行计数和量化的尝试都依赖于耗时且不一致的手动方法。本文提出了一种在磁化率加权成像 (SWI) 中半自动识别 CMB 的技术。这将减少处理时间并提高与手动方法的一致性。该技术依赖于统计阈值算法来识别图像中的低信号强度区。然后使用支持向量机 (SVM) 监督学习分类器将真正的 CMB 与其他标记的低信号强度区分开来。分类器依赖于识别形状和信号强度等特征来识别真正的 CMB。然后对自动分割的结果进行手动复查以去除假阳性。与手动复查和多位审阅者的共识这一金标准相比,该技术的灵敏度达到 81.7%。在 CMB 较多的患者中,与当前的手动技术相比,该技术提供了一种更快的替代方法,但代价是一些敏感性的损失。

相似文献

1
Semiautomated detection of cerebral microbleeds in magnetic resonance images.磁共振成像中脑微出血的半自动检测。
Magn Reson Imaging. 2011 Jul;29(6):844-52. doi: 10.1016/j.mri.2011.02.028. Epub 2011 May 14.
2
Computer-aided detection of cerebral microbleeds in susceptibility-weighted imaging.基于磁敏感加权成像的脑微出血的计算机辅助检测。
Comput Med Imaging Graph. 2015 Dec;46 Pt 3:269-76. doi: 10.1016/j.compmedimag.2015.10.001. Epub 2015 Oct 24.
5

引用本文的文献

5
Deep learning-assisted IoMT framework for cerebral microbleed detection.用于脑微出血检测的深度学习辅助物联网框架。
Heliyon. 2023 Nov 25;9(12):e22879. doi: 10.1016/j.heliyon.2023.e22879. eCollection 2023 Dec.
6
Using transfer learning for automated microbleed segmentation.使用迁移学习进行自动微出血分割。
Front Neuroimaging. 2022 Aug 26;1:940849. doi: 10.3389/fnimg.2022.940849. eCollection 2022.

本文引用的文献

4
Microbleeds versus macrobleeds: evidence for distinct entities.微出血与大出血:不同实体的证据。
Stroke. 2009 Jul;40(7):2382-6. doi: 10.1161/STROKEAHA.109.548974. Epub 2009 May 14.
7
Cerebral microbleeds: a guide to detection and interpretation.脑微出血:检测与解读指南
Lancet Neurol. 2009 Feb;8(2):165-74. doi: 10.1016/S1474-4422(09)70013-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验