Department of Chemical Physics, The Weizmann Institute of Science, Rehovot, Israel.
PLoS Comput Biol. 2011 May;7(5):e1001127. doi: 10.1371/journal.pcbi.1001127. Epub 2011 May 5.
The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia) have very different morphologies, as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix.
肌动蛋白细胞骨架产生的力在决定细胞形状中起着至关重要的作用。这些力包括由于肌动蛋白聚合和与外部基质附着而产生的突起力。我们在这里提出了一个理论模型,用于研究由膜形状和作用于膜上的力之间的反馈引起的细胞形状,这种反馈由凸面曲率敏感的膜复合物介导。在之前的理论研究中,我们已经研究了线性不稳定性的范围,在这个范围内,自发形成细胞突起的过程开始。在这里,我们计算了线性范围之外的二维细胞轮廓的演化,并确定了模型中出现的最终稳定状态形状。我们发现,由粘附或肌动蛋白聚合(片状伪足)驱动的形状具有非常不同的形态,这在细胞中是观察到的。此外,我们发现,随着突起力的强度减弱,系统趋近于突起的周期性图案的稳定化。这一结果可以为许多关于细胞形状对细胞外基质性质的依赖的令人困惑的实验观察提供解释。