CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.
Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
Nat Commun. 2020 Jan 31;11(1):657. doi: 10.1038/s41467-020-14434-6.
To advance microfluidic integration, we present the use of two-photon additive manufacturing to fold 2D channel layouts into compact free-form 3D fluidic circuits with nanometer precision. We demonstrate this technique by tailoring microfluidic nozzles and mixers for time-resolved structural biology at X-ray free-electron lasers (XFELs). We achieve submicron jets with speeds exceeding 160 m s, which allows for the use of megahertz XFEL repetition rates. By integrating an additional orifice, we implement a low consumption flow-focusing nozzle, which is validated by solving a hemoglobin structure. Also, aberration-free in operando X-ray microtomography is introduced to study efficient equivolumetric millisecond mixing in channels with 3D features integrated into the nozzle. Such devices can be printed in minutes by locally adjusting print resolution during fabrication. This technology has the potential to permit ultracompact devices and performance improvements through 3D flow optimization in all fields of microfluidic engineering.
为了推进微流控集成,我们提出了使用双光子增材制造将 2D 通道布局折叠成具有纳米精度的紧凑自由形式 3D 流体回路。我们通过为 X 射线自由电子激光(XFEL)量身定制微流控喷嘴和混合器来展示这项技术,用于时间分辨结构生物学。我们实现了速度超过 160m/s 的亚微米射流,这使得可以使用兆赫兹 XFEL 重复率。通过集成额外的孔口,我们实现了低消耗的流量聚焦喷嘴,并通过解决血红蛋白结构进行了验证。此外,还引入了无像差的在位 X 射线微断层扫描,以研究集成到喷嘴中的 3D 特征通道中的高效等体积毫秒混合。这种器件可以通过在制造过程中局部调整打印分辨率在几分钟内打印出来。这项技术有可能通过在微流控工程的所有领域中进行 3D 流场优化来实现超紧凑的器件和性能提升。