Suppr超能文献

Drosha加工过程控制着整体微小RNA表达的特异性和效率。

Drosha processing controls the specificity and efficiency of global microRNA expression.

作者信息

Feng Yong, Zhang Xiaoxiao, Song Qingfeng, Li Tongbin, Zeng Yan

机构信息

Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Biochim Biophys Acta. 2011 Nov-Dec;1809(11-12):700-7. doi: 10.1016/j.bbagrm.2011.05.015. Epub 2011 Jun 13.

Abstract

microRNAs (miRNAs) are a large family of approximately 22-nucleotide-long RNAs that regulate gene expression. They are first transcribed as long, primary transcripts, which then undergo a series of processing steps to generate the single-stranded, mature miRNAs. Here, we showed that Drosha cleaved hundreds of human primary miRNA transcript substrates with different efficiencies in vitro. The differential Drosha susceptibility of the primary miRNA transcripts significantly correlated with the expression of the corresponding, mature miRNAs in vivo. Conserved miRNAs were more efficiently expressed in vivo, and their primary transcripts were also better Drosha substrates in vitro. Combining secondary structure prediction and statistical analyses, we identified features in human primary miRNA transcripts that predisposed miRNAs to efficient Drosha processing in vitro as well as to better expression in vivo. We propose that the selectivity of Drosha action contributes greatly to the specificity and efficiency of miRNA biogenesis. Moreover, this study serves as an example of substrate specificity of a biochemical reaction regulating gene expression at a global scale in vivo. This article is part of a Special Issue entitled: MicroRNA's in viral gene regulation.

摘要

微小RNA(miRNA)是一个大家族,由大约22个核苷酸长的RNA组成,可调节基因表达。它们最初转录成长链初级转录本,然后经过一系列加工步骤生成单链成熟miRNA。在此,我们表明Drosha在体外以不同效率切割数百种人类初级miRNA转录本底物。初级miRNA转录本对Drosha的不同敏感性与体内相应成熟miRNA的表达显著相关。保守的miRNA在体内表达更高效,其初级转录本在体外也是更好的Drosha底物。结合二级结构预测和统计分析,我们在人类初级miRNA转录本中鉴定出一些特征,这些特征使miRNA在体外易于被Drosha有效加工,并在体内具有更好的表达。我们认为Drosha作用的选择性对miRNA生物合成的特异性和效率有很大贡献。此外,本研究是一个在体内全局范围内调节基因表达的生化反应底物特异性的例子。本文是名为:病毒基因调控中的微小RNA 的特刊的一部分。

相似文献

1
Drosha processing controls the specificity and efficiency of global microRNA expression.
Biochim Biophys Acta. 2011 Nov-Dec;1809(11-12):700-7. doi: 10.1016/j.bbagrm.2011.05.015. Epub 2011 Jun 13.
2
Genome-wide Mapping of DROSHA Cleavage Sites on Primary MicroRNAs and Noncanonical Substrates.
Mol Cell. 2017 Apr 20;66(2):258-269.e5. doi: 10.1016/j.molcel.2017.03.013.
3
The terminal loop region controls microRNA processing by Drosha and Dicer.
Nucleic Acids Res. 2010 Nov;38(21):7689-97. doi: 10.1093/nar/gkq645. Epub 2010 Jul 21.
4
Role of pri-miRNA tertiary structure in miR-17~92 miRNA biogenesis.
RNA Biol. 2011 Nov-Dec;8(6):1105-14. doi: 10.4161/rna.8.6.17410. Epub 2011 Nov 1.
5
Molecular Basis for the Single-Nucleotide Precision of Primary microRNA Processing.
Mol Cell. 2019 Feb 7;73(3):505-518.e5. doi: 10.1016/j.molcel.2018.11.005. Epub 2018 Dec 13.
7
The insertion in the double-stranded RNA binding domain of human Drosha is important for its function.
Biochim Biophys Acta Gene Regul Mech. 2017 Dec;1860(12):1179-1188. doi: 10.1016/j.bbagrm.2017.10.004. Epub 2017 Nov 3.
8
Bulges control pri-miRNA processing in a position and strand-dependent manner.
RNA Biol. 2021 Nov;18(11):1716-1726. doi: 10.1080/15476286.2020.1868139. Epub 2020 Dec 31.
9
The nuclear RNase III Drosha initiates microRNA processing.
Nature. 2003 Sep 25;425(6956):415-9. doi: 10.1038/nature01957.
10
miRNA sensitivity to Drosha levels correlates with pre-miRNA secondary structure.
RNA. 2014 May;20(5):621-31. doi: 10.1261/rna.043943.113. Epub 2014 Mar 27.

引用本文的文献

1
Metabolic and circadian inputs encode anticipatory biogenesis of hepatic fed microRNAs.
Life Sci Alliance. 2024 Feb 26;7(5). doi: 10.26508/lsa.202302180. Print 2024 May.
2
Relative specificity as an important consideration in the big data era.
Front Genet. 2022 Oct 6;13:1030415. doi: 10.3389/fgene.2022.1030415. eCollection 2022.
3
Dynamic Protein-RNA recognition in primary MicroRNA processing.
Curr Opin Struct Biol. 2022 Oct;76:102442. doi: 10.1016/j.sbi.2022.102442. Epub 2022 Sep 5.
4
Molecular Dissection of a Conserved Cluster of miRNAs Identifies Critical Structural Determinants That Mediate Differential Processing.
Front Cell Dev Biol. 2022 Jun 17;10:909212. doi: 10.3389/fcell.2022.909212. eCollection 2022.
5
Implication of genetic variants in primary microRNA processing sites in the risk of multiple sclerosis.
EBioMedicine. 2022 Jun;80:104052. doi: 10.1016/j.ebiom.2022.104052. Epub 2022 May 10.
6
Conservation of Differential Animal MicroRNA Processing by Drosha and Dicer.
Front Mol Biosci. 2022 Jan 3;8:730006. doi: 10.3389/fmolb.2021.730006. eCollection 2021.
7
Selectivity of Exportin 5 binding to human precursor microRNAs.
RNA Biol. 2021 Nov 12;18(sup2):730-737. doi: 10.1080/15476286.2021.1984096. Epub 2021 Sep 30.
8
Cis regulation within a cluster of viral microRNAs.
Nucleic Acids Res. 2021 Sep 27;49(17):10018-10033. doi: 10.1093/nar/gkab731.
9
Steroidal Regulation of Oviductal microRNAs Is Associated with microRNA-Processing in Beef Cows.
Int J Mol Sci. 2021 Jan 19;22(2):953. doi: 10.3390/ijms22020953.
10

本文引用的文献

1
Functional identification of optimized RNAi triggers using a massively parallel sensor assay.
Mol Cell. 2011 Mar 18;41(6):733-46. doi: 10.1016/j.molcel.2011.02.008. Epub 2011 Feb 25.
2
The terminal loop region controls microRNA processing by Drosha and Dicer.
Nucleic Acids Res. 2010 Nov;38(21):7689-97. doi: 10.1093/nar/gkq645. Epub 2010 Jul 21.
4
Emerging paradigms of regulated microRNA processing.
Genes Dev. 2010 Jun 1;24(11):1086-92. doi: 10.1101/gad.1919710.
5
A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity.
Science. 2010 Jun 25;328(5986):1694-8. doi: 10.1126/science.1190809. Epub 2010 May 6.
6
A dicer-independent miRNA biogenesis pathway that requires Ago catalysis.
Nature. 2010 Jun 3;465(7298):584-9. doi: 10.1038/nature09092.
7
Mammalian microRNAs: experimental evaluation of novel and previously annotated genes.
Genes Dev. 2010 May 15;24(10):992-1009. doi: 10.1101/gad.1884710. Epub 2010 Apr 22.
8
Translation efficiency is determined by both codon bias and folding energy.
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3645-50. doi: 10.1073/pnas.0909910107. Epub 2010 Feb 2.
10
In silico miRNA prediction in metazoan genomes: balancing between sensitivity and specificity.
BMC Genomics. 2009 Apr 30;10:204. doi: 10.1186/1471-2164-10-204.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验