Suppr超能文献

基于傅里叶分析预测管家基因。

Predicting housekeeping genes based on Fourier analysis.

机构信息

Bioinformatics Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China.

出版信息

PLoS One. 2011;6(6):e21012. doi: 10.1371/journal.pone.0021012. Epub 2011 Jun 8.

Abstract

Housekeeping genes (HKGs) generally have fundamental functions in basic biochemical processes in organisms, and usually have relatively steady expression levels across various tissues. They play an important role in the normalization of microarray technology. Using Fourier analysis we transformed gene expression time-series from a Hela cell cycle gene expression dataset into Fourier spectra, and designed an effective computational method for discriminating between HKGs and non-HKGs using the support vector machine (SVM) supervised learning algorithm which can extract significant features of the spectra, providing a basis for identifying specific gene expression patterns. Using our method we identified 510 human HKGs, and then validated them by comparison with two independent sets of tissue expression profiles. Results showed that our predicted HKG set is more reliable than three previously identified sets of HKGs.

摘要

管家基因(HKGs)通常在生物体的基本生化过程中具有基本功能,并且通常在各种组织中具有相对稳定的表达水平。它们在微阵列技术的标准化中起着重要作用。我们使用傅里叶分析将来自 HeLa 细胞周期基因表达数据集的基因表达时间序列转换为傅里叶谱,并使用支持向量机(SVM)监督学习算法设计了一种有效的计算方法,用于区分 HKG 和非 HKG,该算法可以提取谱的显著特征,为识别特定的基因表达模式提供了依据。使用我们的方法,我们鉴定了 510 个人类 HKGs,然后通过与两个独立的组织表达谱进行比较来验证它们。结果表明,我们预测的 HKG 集比以前鉴定的三个 HKG 集更可靠。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验