Institut Curie, Centre de Recherche, Paris, F-75248 France.
Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11429-34. doi: 10.1073/pnas.1010481108. Epub 2011 Jun 27.
Many cell movements proceed via a crawling mechanism, where polymerization of the cytoskeletal protein actin pushes out the leading edge membrane. In this model, membrane tension has been seen as an impediment to filament growth and cell motility. Here we use a simple model of cell motility, the Caenorhabditis elegans sperm cell, to test how membrane tension affects movement and cytoskeleton dynamics. To enable these analyses, we create transgenic worm strains carrying sperm with a fluorescently labeled cytoskeleton. Via osmotic shock and deoxycholate treatments, we relax or tense the cell membrane and quantify apparent membrane tension changes by the membrane tether technique. Surprisingly, we find that membrane tension reduction is correlated with a decrease in cell displacement speed, whereas an increase in membrane tension enhances motility. We further demonstrate that apparent polymerization rates follow the same trends. We observe that membrane tension reduction leads to an unorganized, rough lamellipodium, composed of short filaments angled away from the direction of movement. On the other hand, an increase in tension reduces lateral membrane protrusions in the lamellipodium, and filaments are longer and more oriented toward the direction of movement. Overall we propose that membrane tension optimizes motility by streamlining polymerization in the direction of movement, thus adding a layer of complexity to our current understanding of how membrane tension enters into the motility equation.
许多细胞运动通过爬行机制进行,其中细胞骨架蛋白肌动蛋白的聚合将前缘膜推出去。在这个模型中,膜张力被认为是阻碍丝状体生长和细胞运动的因素。在这里,我们使用一种简单的细胞运动模型,即秀丽隐杆线虫精子细胞,来测试膜张力如何影响运动和细胞骨架动力学。为了进行这些分析,我们创建了携带荧光标记细胞骨架的转基因虫株。通过渗透压冲击和脱氧胆酸钠处理,我们松弛或紧张细胞膜,并通过膜系绳技术定量测量明显的膜张力变化。令人惊讶的是,我们发现膜张力的降低与细胞位移速度的降低相关,而膜张力的增加则增强了运动性。我们进一步证明了明显的聚合速率遵循相同的趋势。我们观察到膜张力的降低导致了无组织的、粗糙的片状伪足,由远离运动方向的短丝组成。另一方面,张力的增加减少了片状伪足中的侧向膜突起,并且丝状体更长,更朝向运动方向。总的来说,我们提出膜张力通过在运动方向上优化聚合来优化运动性,从而为我们目前对膜张力如何进入运动方程的理解增加了一层复杂性。