Gramfort Alexandre, Strohmeier Daniel, Haueisen Jens, Hamalainen Matti, Kowalski Matthieu
INRIA, Parietal team, Saclay, France.
Inf Process Med Imaging. 2011;22:600-11. doi: 10.1007/978-3-642-22092-0_49.
Magnetoencephalography (MEG) and electroencephalography (EEG) allow functional brain imaging with high temporal resolution. While time-frequency analysis is often used in the field, it is not commonly employed in the context of the ill-posed inverse problem that maps the MEG and EEG measurements to the source space in the brain. In this work, we detail how convex structured sparsity can be exploited to achieve a principled and more accurate functional imaging approach. Importantly, time-frequency dictionaries can capture the non-stationary nature of brain signals and state-of-the-art convex optimization procedures based on proximal operators allow the derivation of a fast estimation algorithm. We compare the accuracy of our new method to recently proposed inverse solvers with help of simulations and analysis of real MEG data.
脑磁图(MEG)和脑电图(EEG)可实现具有高时间分辨率的脑功能成像。虽然时频分析在该领域经常被使用,但在将MEG和EEG测量映射到大脑源空间的不适定逆问题中并不常用。在这项工作中,我们详细阐述了如何利用凸结构稀疏性来实现一种有原则且更准确的功能成像方法。重要的是,时频字典可以捕捉脑信号的非平稳特性,并且基于近端算子的先进凸优化程序允许推导一种快速估计算法。我们借助模拟和对真实MEG数据的分析,将我们新方法的准确性与最近提出的逆解算器进行了比较。