Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
J Biol Chem. 2011 Sep 16;286(37):32749-61. doi: 10.1074/jbc.M111.240044. Epub 2011 Jul 20.
The current paradigm for receptor-ligand dissociation kinetics assumes off-rates as functions of instantaneous force without impact from its prior history. This a priori assumption is the foundation for predicting dissociation from a given initial state using kinetic equations. Here we have invalidated this assumption by demonstrating the impact of force history with single-bond kinetic experiments involving selectins and their ligands that mediate leukocyte tethering and rolling on vascular surfaces during inflammation. Dissociation of bonds between L-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) loaded at a constant ramp rate to a constant hold force behaved as catch-slip bonds at low ramp rates that transformed to slip-only bonds at high ramp rates. Strikingly, bonds between L-selectin and 6-sulfo-sialyl Lewis X were impervious to ramp rate changes. This ligand-specific force history effect resembled the effect of a point mutation at the L-selectin surface (L-selectinA108H) predicted to contact the former but not the latter ligand, suggesting that the high ramp rate induced similar structural changes as the mutation. Although the A108H substitution in L-selectin eliminated the ramp rate responsiveness of its dissociation from PSGL-1, the inverse mutation H108A in P-selectin acquired the ramp rate responsiveness. Our data are well explained by the sliding-rebinding model for catch-slip bonds extended to incorporate the additional force history dependence, with Ala-108 playing a pivotal role in this structural mechanism. These results call for a paradigm shift in modeling the mechanical regulation of receptor-ligand bond dissociation, which includes conformational coupling between binding pocket and remote regions of the interacting molecules.
当前的受体-配体解离动力学模式假设,脱离速率是即时力的函数,而不受其先前历史的影响。这种先验假设是使用动力学方程从给定初始状态预测解离的基础。在这里,我们通过单键动力学实验证明了力历史的影响,这些实验涉及选择素及其配体,它们在炎症过程中介导白细胞在血管表面的系附和滚动。在恒定的 ramp 速率下加载到恒定的保持力的 L-选择素和 P-选择素糖蛋白配体-1(PSGL-1)之间的键的解离,在低 ramp 速率下表现为 catch-slip 键,在高 ramp 速率下转变为 slip-only 键。引人注目的是,L-选择素和 6-硫酸唾液酸 Lewis X 之间的键不受 ramp 速率变化的影响。这种配体特异性的力历史效应类似于 L-选择素表面的点突变(L-选择素 A108H)的效应,预测该突变与前一种配体接触,但不与后一种配体接触,这表明高 ramp 速率诱导了类似于突变的结构变化。尽管 L-选择素中的 A108H 取代消除了其与 PSGL-1 解离的 ramp 速率响应性,但 P-选择素中的反向突变 H108A 获得了 ramp 速率响应性。我们的数据很好地解释了 catch-slip 键的滑动再结合模型,该模型扩展到包含额外的力历史依赖性,其中 Ala-108 在这种结构机制中起着关键作用。这些结果要求对受体-配体键解离的机械调节进行范式转变,其中包括结合口袋和相互作用分子的远程区域之间的构象耦合。