Suppr超能文献

力作用速率对捕获键的调节。

Regulation of catch bonds by rate of force application.

机构信息

Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

出版信息

J Biol Chem. 2011 Sep 16;286(37):32749-61. doi: 10.1074/jbc.M111.240044. Epub 2011 Jul 20.

Abstract

The current paradigm for receptor-ligand dissociation kinetics assumes off-rates as functions of instantaneous force without impact from its prior history. This a priori assumption is the foundation for predicting dissociation from a given initial state using kinetic equations. Here we have invalidated this assumption by demonstrating the impact of force history with single-bond kinetic experiments involving selectins and their ligands that mediate leukocyte tethering and rolling on vascular surfaces during inflammation. Dissociation of bonds between L-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) loaded at a constant ramp rate to a constant hold force behaved as catch-slip bonds at low ramp rates that transformed to slip-only bonds at high ramp rates. Strikingly, bonds between L-selectin and 6-sulfo-sialyl Lewis X were impervious to ramp rate changes. This ligand-specific force history effect resembled the effect of a point mutation at the L-selectin surface (L-selectinA108H) predicted to contact the former but not the latter ligand, suggesting that the high ramp rate induced similar structural changes as the mutation. Although the A108H substitution in L-selectin eliminated the ramp rate responsiveness of its dissociation from PSGL-1, the inverse mutation H108A in P-selectin acquired the ramp rate responsiveness. Our data are well explained by the sliding-rebinding model for catch-slip bonds extended to incorporate the additional force history dependence, with Ala-108 playing a pivotal role in this structural mechanism. These results call for a paradigm shift in modeling the mechanical regulation of receptor-ligand bond dissociation, which includes conformational coupling between binding pocket and remote regions of the interacting molecules.

摘要

当前的受体-配体解离动力学模式假设,脱离速率是即时力的函数,而不受其先前历史的影响。这种先验假设是使用动力学方程从给定初始状态预测解离的基础。在这里,我们通过单键动力学实验证明了力历史的影响,这些实验涉及选择素及其配体,它们在炎症过程中介导白细胞在血管表面的系附和滚动。在恒定的 ramp 速率下加载到恒定的保持力的 L-选择素和 P-选择素糖蛋白配体-1(PSGL-1)之间的键的解离,在低 ramp 速率下表现为 catch-slip 键,在高 ramp 速率下转变为 slip-only 键。引人注目的是,L-选择素和 6-硫酸唾液酸 Lewis X 之间的键不受 ramp 速率变化的影响。这种配体特异性的力历史效应类似于 L-选择素表面的点突变(L-选择素 A108H)的效应,预测该突变与前一种配体接触,但不与后一种配体接触,这表明高 ramp 速率诱导了类似于突变的结构变化。尽管 L-选择素中的 A108H 取代消除了其与 PSGL-1 解离的 ramp 速率响应性,但 P-选择素中的反向突变 H108A 获得了 ramp 速率响应性。我们的数据很好地解释了 catch-slip 键的滑动再结合模型,该模型扩展到包含额外的力历史依赖性,其中 Ala-108 在这种结构机制中起着关键作用。这些结果要求对受体-配体键解离的机械调节进行范式转变,其中包括结合口袋和相互作用分子的远程区域之间的构象耦合。

相似文献

1
Regulation of catch bonds by rate of force application.
J Biol Chem. 2011 Sep 16;286(37):32749-61. doi: 10.1074/jbc.M111.240044. Epub 2011 Jul 20.
2
3
Low force decelerates L-selectin dissociation from P-selectin glycoprotein ligand-1 and endoglycan.
J Biol Chem. 2004 Jan 16;279(3):2291-8. doi: 10.1074/jbc.M310396200. Epub 2003 Oct 22.
4
Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond.
Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11281-6. doi: 10.1073/pnas.0401870101. Epub 2004 Jul 26.
5
Enhancement of L-selectin, but not P-selectin, bond formation frequency by convective flow.
Biophys J. 2008 Feb 1;94(3):1034-45. doi: 10.1529/biophysj.106.098707. Epub 2007 Sep 21.
6
Regulation of PSGL-1 interactions with L-selectin, P-selectin, and E-selectin: role of human fucosyltransferase-IV and -VII.
J Biol Chem. 2005 Feb 18;280(7):5378-90. doi: 10.1074/jbc.M410899200. Epub 2004 Dec 3.
7
Chemically distinct transition states govern rapid dissociation of single L-selectin bonds under force.
Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3784-9. doi: 10.1073/pnas.061324998. Epub 2001 Mar 13.
9
10
Molecular basis of leukocyte rolling on PSGL-1. Predominant role of core-2 O-glycans and of tyrosine sulfate residue 51.
J Biol Chem. 2003 Jan 3;278(1):37-47. doi: 10.1074/jbc.M204360200. Epub 2002 Oct 25.

引用本文的文献

1
Mechanical forces amplify TCR mechanotransduction in T cell activation and function.
Appl Phys Rev. 2024 Mar;11(1):011304. doi: 10.1063/5.0166848.
2
Emergence of slip-ideal-slip behavior in tip-links serve as force filters of sound in hearing.
Nat Commun. 2024 Feb 21;15(1):1595. doi: 10.1038/s41467-024-45423-8.
3
What's the Catch? The Significance of Catch Bonds in T Cell Activation.
J Immunol. 2023 Aug 1;211(3):333-342. doi: 10.4049/jimmunol.2300141.
4
Fast Force Loading Disrupts Molecular Binding Stability in Human and Mouse Cell Adhesions.
Mol Cell Biomech. 2019;16(3):211-223. doi: 10.32604/mcb.2019.07267.
5
Immune-mediated alopecias and their mechanobiological aspects.
Cells Dev. 2022 Jun;170:203793. doi: 10.1016/j.cdev.2022.203793. Epub 2022 May 29.
6
Mechanosensitive axon outgrowth mediated by L1-laminin clutch interface.
Biophys J. 2021 Sep 7;120(17):3566-3576. doi: 10.1016/j.bpj.2021.08.009. Epub 2021 Aug 10.
7
Single-molecule investigations of T-cell activation.
Curr Opin Biomed Eng. 2019 Dec;12:102-110. doi: 10.1016/j.cobme.2019.10.005. Epub 2019 Nov 1.
8
Dynamic bonds and their roles in mechanosensing.
Curr Opin Chem Biol. 2019 Dec;53:88-97. doi: 10.1016/j.cbpa.2019.08.005. Epub 2019 Sep 27.
9
Role of Mechanotransduction and Tension in T Cell Function.
Front Immunol. 2018 Nov 15;9:2638. doi: 10.3389/fimmu.2018.02638. eCollection 2018.
10
Exploring the Sulfatase 1 Catch Bond Free Energy Landscape using Jarzynski's Equality.
Sci Rep. 2018 Nov 15;8(1):16849. doi: 10.1038/s41598-018-35120-0.

本文引用的文献

1
Forcing switch from short- to intermediate- and long-lived states of the alphaA domain generates LFA-1/ICAM-1 catch bonds.
J Biol Chem. 2010 Nov 12;285(46):35967-78. doi: 10.1074/jbc.M110.155770. Epub 2010 Sep 6.
2
Triphasic force dependence of E-selectin/ligand dissociation governs cell rolling under flow.
Biophys J. 2010 Aug 9;99(4):1166-74. doi: 10.1016/j.bpj.2010.05.040.
3
Force-induced cleavage of single VWFA1A2A3 tridomains by ADAMTS-13.
Blood. 2010 Jan 14;115(2):370-8. doi: 10.1182/blood-2009-03-210369. Epub 2009 Nov 6.
5
Rolling cell adhesion.
Annu Rev Cell Dev Biol. 2010;26:363-96. doi: 10.1146/annurev.cellbio.042308.113238.
6
Demonstration of catch bonds between an integrin and its ligand.
J Cell Biol. 2009 Jun 29;185(7):1275-84. doi: 10.1083/jcb.200810002.
7
Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor.
Science. 2009 Jun 5;324(5932):1330-4. doi: 10.1126/science.1170905.
8
Theoretical aspects of the biological catch bond.
Acc Chem Res. 2009 Jun 16;42(6):693-703. doi: 10.1021/ar800202z.
9
Structural basis for selectin mechanochemistry.
Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):91-6. doi: 10.1073/pnas.0810784105. Epub 2008 Dec 31.
10
Low spring constant regulates P-selectin-PSGL-1 bond rupture.
Biophys J. 2008 Dec;95(11):5439-48. doi: 10.1529/biophysj.108.137141. Epub 2008 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验