Montreal Neurological Institute and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, Montreal H3A 2B4 Quebec, Canada.
Prog Neurobiol. 2011 Oct;95(2):104-32. doi: 10.1016/j.pneurobio.2011.07.003. Epub 2011 Jul 23.
GABA is the main inhibitory neurotransmitter in the adult forebrain, where it activates ionotropic type A and metabotropic type B receptors. Early studies have shown that GABA(A) receptor-mediated inhibition controls neuronal excitability and thus the occurrence of seizures. However, more complex, and at times unexpected, mechanisms of GABAergic signaling have been identified during epileptiform discharges over the last few years. Here, we will review experimental data that point at the paradoxical role played by GABA(A) receptor-mediated mechanisms in synchronizing neuronal networks, and in particular those of limbic structures such as the hippocampus, the entorhinal and perirhinal cortices, or the amygdala. After having summarized the fundamental characteristics of GABA(A) receptor-mediated mechanisms, we will analyze their role in the generation of network oscillations and their contribution to epileptiform synchronization. Whether and how GABA(A) receptors influence the interaction between limbic networks leading to ictogenesis will be also reviewed. Finally, we will consider the role of altered inhibition in the human epileptic brain along with the ability of GABA(A) receptor-mediated conductances to generate synchronous depolarizing events that may lead to ictogenesis in human epileptic disorders as well.
GABA 是成人前脑中的主要抑制性神经递质,它激活离子型 A 型和代谢型 B 型受体。早期研究表明,GABA(A) 受体介导的抑制控制神经元兴奋性,从而控制癫痫发作的发生。然而,在过去几年中,在癫痫样放电期间,已经确定了 GABA 能信号传递更复杂且有时出乎意料的机制。在这里,我们将回顾指向 GABA(A) 受体介导的机制在同步神经元网络中发挥矛盾作用的实验数据,特别是在海马体、内嗅皮层和旁嗅皮层或杏仁核等边缘结构中。在总结了 GABA(A) 受体介导的机制的基本特征之后,我们将分析它们在网络振荡产生中的作用及其对癫痫样同步的贡献。我们还将讨论 GABA(A) 受体是否以及如何影响导致癫痫发作的边缘网络之间的相互作用。最后,我们将考虑改变的抑制在人类癫痫大脑中的作用,以及 GABA(A) 受体介导的电导率在产生可能导致人类癫痫障碍癫痫发作的同步去极化事件中的作用。