USDA-ARS, Salinas, California, United States of America.
PLoS Pathog. 2011 Jul;7(7):e1002137. doi: 10.1371/journal.ppat.1002137. Epub 2011 Jul 28.
The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmolarity. To gain insights into the mechanisms that confer the organisms' pathogenicity and enable them to proliferate in the unique ecological niche of the plant vascular system, we sequenced the genomes of V. dahliae and V. albo-atrum and compared them to each other, and to the genome of Fusarium oxysporum, another fungal wilt pathogen. Our analyses identified a set of proteins that are shared among all three wilt pathogens, and present in few other fungal species. One of these is a homolog of a bacterial glucosyltransferase that synthesizes virulence-related osmoregulated periplasmic glucans in bacteria. Pathogenicity tests of the corresponding V. dahliae glucosyltransferase gene deletion mutants indicate that the gene is required for full virulence in the Australian tobacco species Nicotiana benthamiana. Compared to other fungi, the two sequenced Verticillium genomes encode more pectin-degrading enzymes and other carbohydrate-active enzymes, suggesting an extraordinary capacity to degrade plant pectin barricades. The high level of synteny between the two Verticillium assemblies highlighted four flexible genomic islands in V. dahliae that are enriched for transposable elements, and contain duplicated genes and genes that are important in signaling/transcriptional regulation and iron/lipid metabolism. Coupled with an enhanced capacity to degrade plant materials, these genomic islands may contribute to the expanded genetic diversity and virulence of V. dahliae, the primary causal agent of Verticillium wilts. Significantly, our study reveals insights into the genetic mechanisms of niche adaptation of fungal wilt pathogens, advances our understanding of the evolution and development of their pathogenesis, and sheds light on potential avenues for the development of novel disease management strategies to combat destructive wilt diseases.
维管束萎蔫真菌Verticillium dahliae 和 V. albo-atrum 感染了超过 200 种植物物种,导致每年作物损失数十亿美元。特征性萎蔫症状是病原体在木质部导管中定殖和增殖的结果,木质部导管的渗透压会发生波动。为了深入了解赋予这些生物体致病性并使它们能够在植物维管束系统独特的生态位中增殖的机制,我们对 V. dahliae 和 V. albo-atrum 的基因组进行了测序,并将它们彼此进行了比较,还与另一种真菌萎蔫病原体 Fusarium oxysporum 的基因组进行了比较。我们的分析确定了一组在所有三种萎蔫病原体中共享的蛋白质,而在其他少数几种真菌物种中存在。其中之一是细菌葡萄糖基转移酶的同源物,该酶在细菌中合成与毒力相关的渗透压调节周质葡聚糖。相应的 V. dahliae 葡萄糖基转移酶基因缺失突变体的致病性测试表明,该基因是在澳大利亚烟草物种 Nicotiana benthamiana 中完全毒力所必需的。与其他真菌相比,这两个测序的 Verticillium 基因组编码了更多的果胶降解酶和其他碳水化合物活性酶,表明其具有非凡的降解植物果胶障碍的能力。两个Verticillium 组装体之间的高度同线性突出了 V. dahliae 中的四个灵活基因组岛,这些基因组岛富含转座元件,并且包含重复基因和在信号/转录调节以及铁/脂质代谢中重要的基因。加上降解植物材料的能力增强,这些基因组岛可能有助于 V. dahliae 的遗传多样性和毒力的扩大,V. dahliae 是维管束萎蔫病的主要病原体。重要的是,我们的研究揭示了真菌萎蔫病原体适应生态位的遗传机制的见解,增进了我们对其发病机制的进化和发展的理解,并为开发新的疾病管理策略以防治破坏性萎蔫病提供了思路。