Suppr超能文献

直接成像大鼠触须-桶状皮层 IV-V 层中 BOLD fMRI 的大血管和微血管贡献。

Direct imaging of macrovascular and microvascular contributions to BOLD fMRI in layers IV-V of the rat whisker-barrel cortex.

机构信息

National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Neuroimage. 2012 Jan 16;59(2):1451-60. doi: 10.1016/j.neuroimage.2011.08.001. Epub 2011 Aug 7.

Abstract

The spatiotemporal characteristics of the hemodynamic response to increased neural activity were investigated at the level of individual intracortical vessels using BOLD-fMRI in a well-established rodent model of somatosensory stimulation at 11.7 T. Functional maps of the rat barrel cortex were obtained at 150 × 150 × 500 μm spatial resolution every 200 ms. The high spatial resolution allowed separation of active voxels into those containing intracortical macro vessels, mainly vein/venules (referred to as macrovasculature), and those enriched with arteries/capillaries and small venules (referred to as microvasculature) since the macro vessel can be readily mapped due to the fast T2 decay of blood at 11.7 T. The earliest BOLD response was observed within layers IV-V by 0.8s following stimulation and encompassed mainly the voxels containing the microvasculature and some confined macrovasculature voxels. By 1.2s, the BOLD signal propagated to the macrovasculature voxels where the peak BOLD signal was 2-3 times higher than that of the microvasculature voxels. The BOLD response propagated in individual venules/veins far from neuronal sources at later times. This was also observed in layers IV-V of the barrel cortex after specific stimulation of separated whisker rows. These results directly visualized that the earliest hemodynamic changes to increased neural activity occur mainly in the microvasculature and spread toward the macrovasculature. However, at peak response, the BOLD signal is dominated by penetrating venules even at layers IV-V of the cortex.

摘要

使用 11.7T 下的 BOLD-fMRI 在成熟的感觉刺激啮齿动物模型中研究了神经活动增加时血液动力学反应的时空特征在单个皮质内血管水平。以 150×150×500μm 的空间分辨率每 200ms 获得大鼠皮层桶状核功能图。高空间分辨率允许将活跃体素分为包含皮质内大血管的体素,主要是静脉/小静脉(称为大血管)和富含动脉/毛细血管和小静脉的体素(称为微血管),因为大血管可以由于 11.7T 下血液的快速 T2 衰减而易于绘制。刺激后 0.8s 内,最早的 BOLD 反应在 IV-V 层观察到,主要包含包含微血管和一些局限于大血管的体素。在 1.2s 时,BOLD 信号传播到大血管体素,其中 BOLD 信号峰值比微血管体素高 2-3 倍。BOLD 反应在远离神经元源的单个静脉/血管中在后期传播。在分离的胡须行特异性刺激后,在桶状皮层的 IV-V 层也观察到了这种情况。这些结果直接显示,增加神经活动引起的最早血液动力学变化主要发生在微血管中,并向大血管传播。然而,在峰值反应时,BOLD 信号甚至在皮层的 IV-V 层也主要由穿透性静脉主导。

相似文献

1
Direct imaging of macrovascular and microvascular contributions to BOLD fMRI in layers IV-V of the rat whisker-barrel cortex.
Neuroimage. 2012 Jan 16;59(2):1451-60. doi: 10.1016/j.neuroimage.2011.08.001. Epub 2011 Aug 7.
5
A dynamic causal model of the coupling between pulse stimulation and neural activity.
Neural Comput. 2009 Oct;21(10):2846-68. doi: 10.1162/neco.2009.07-08-820.
8
Sensory inputs from whisking movements modify cortical whisker maps visualized with functional magnetic resonance imaging.
Cereb Cortex. 2008 Jun;18(6):1314-25. doi: 10.1093/cercor/bhm163. Epub 2007 Oct 19.
10
High Spatiotemporal Resolution Radial Encoding Single-Vessel fMRI.
Adv Sci (Weinh). 2024 Jul;11(26):e2309218. doi: 10.1002/advs.202309218. Epub 2024 Apr 30.

引用本文的文献

1
Assessment of the macrovascular contribution to resting-state fMRI functional connectivity at 3 Tesla.
Imaging Neurosci (Camb). 2024 May 20;2. doi: 10.1162/imag_a_00174. eCollection 2024.
2
3
Predicting the macrovascular contribution to resting-state fMRI functional connectivity at 3 Tesla: A model-informed approach.
Imaging Neurosci (Camb). 2024 Oct 15;2. doi: 10.1162/imag_a_00315. eCollection 2024.
5
Contextual responses drive a unique laminar signature in human V1.
iScience. 2025 Jun 19;28(7):112967. doi: 10.1016/j.isci.2025.112967. eCollection 2025 Jul 18.
6
Elucidating hemodynamics and neuro-glio-vascular signaling using rodent fMRI.
Trends Neurosci. 2025 Mar;48(3):227-241. doi: 10.1016/j.tins.2024.12.010. Epub 2025 Jan 21.
9
Layer-specific BOLD effects in gradient and spin-echo acquisitions in somatosensory cortex.
Magn Reson Med. 2025 Mar;93(3):1314-1328. doi: 10.1002/mrm.30326. Epub 2024 Oct 7.
10
High Spatiotemporal Resolution Radial Encoding Single-Vessel fMRI.
Adv Sci (Weinh). 2024 Jul;11(26):e2309218. doi: 10.1002/advs.202309218. Epub 2024 Apr 30.

本文引用的文献

1
Cortical depth-dependent temporal dynamics of the BOLD response in the human brain.
J Cereb Blood Flow Metab. 2011 Oct;31(10):1999-2008. doi: 10.1038/jcbfm.2011.57. Epub 2011 Apr 20.
2
Spatiotemporal evolution of the functional magnetic resonance imaging response to ultrashort stimuli.
J Neurosci. 2011 Jan 26;31(4):1440-7. doi: 10.1523/JNEUROSCI.3986-10.2011.
3
Glial and neuronal control of brain blood flow.
Nature. 2010 Nov 11;468(7321):232-43. doi: 10.1038/nature09613.
4
Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal.
Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15246-51. doi: 10.1073/pnas.1006735107. Epub 2010 Aug 9.
6
Intracortical microcirculatory change induced by anesthesia in rat somatosensory cortex.
Adv Exp Med Biol. 2010;662:57-61. doi: 10.1007/978-1-4419-1241-1_7.
7
3D mapping of somatotopic reorganization with small animal functional MRI.
Neuroimage. 2010 Jan 15;49(2):1667-76. doi: 10.1016/j.neuroimage.2009.09.021. Epub 2009 Sep 18.
8
An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging.
Neuroimage. 2009 Oct 15;48(1):150-65. doi: 10.1016/j.neuroimage.2009.05.051. Epub 2009 May 27.
9
Cortical layer-dependent dynamic blood oxygenation, cerebral blood flow and cerebral blood volume responses during visual stimulation.
Neuroimage. 2008 Oct 15;43(1):1-9. doi: 10.1016/j.neuroimage.2008.06.029. Epub 2008 Jul 4.
10
Functional reactivity of cerebral capillaries.
J Cereb Blood Flow Metab. 2008 May;28(5):961-72. doi: 10.1038/sj.jcbfm.9600590. Epub 2007 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验