Department of Biology, University of Maryland, College Park, MD 20742, United States.
Semin Cell Dev Biol. 2011 Jul;22(5):514-20. doi: 10.1016/j.semcdb.2011.06.007. Epub 2011 Aug 12.
Discovery of long-term potentiation (LTP) in the dentate gyrus of the rabbit hippocampus by Bliss and Lømo opened up a whole new field to study activity-dependent long-term synaptic modifications in the brain. Since then hippocampal synapses have been a key model system to study the mechanisms of different forms of synaptic plasticity. At least for the postsynaptic forms of LTP and long-term depression (LTD), regulation of AMPA receptors (AMPARs) has emerged as a key mechanism. While many of the synaptic plasticity mechanisms uncovered in at the hippocampal synapses apply to synapses across diverse brain regions, there are differences in the mechanisms that often reveal the specific functional requirements of the brain area under study. Here we will review AMPAR regulation underlying synaptic plasticity in hippocampus and neocortex. The main focus of this review will be placed on postsynaptic forms of synaptic plasticity that impinge on the regulation of AMPARs using hippocampal CA1 and primary sensory cortices as examples. And through the comparison, we will highlight the key similarities and functional differences between the two synapses.
布利斯和洛莫 (Bliss and Lømo) 在兔海马齿状回中发现长时程增强 (LTP),为研究大脑中依赖活动的长时程突触修饰开辟了全新的领域。从那时起,海马突触已成为研究不同形式突触可塑性机制的关键模型系统。至少对于 LTP 和长时程压抑 (LTD) 的突触后形式,AMPA 受体 (AMPAR) 的调节已成为关键机制。虽然在海马突触中发现的许多突触可塑性机制适用于不同脑区的突触,但在经常揭示研究中脑区特定功能需求的机制上存在差异。在这里,我们将回顾海马体和新皮层中与突触可塑性相关的 AMPAR 调节。本篇综述的主要重点将放在影响 AMPAR 调节的突触后形式的可塑性上,以海马 CA1 和初级感觉皮层为例。通过比较,我们将突出这两个突触之间的关键相似性和功能差异。