Laboratory of Solid-State Physics and Magnetism, KULeuven, Heverlee, Belgium.
Nanotechnology. 2011 Sep 30;22(39):395202. doi: 10.1088/0957-4484/22/39/395202. Epub 2011 Sep 5.
We investigate breakdown of carbon nanotube (CNT) interconnects induced by Joule heating in air and under high vacuum conditions (10(-5) mbar). A CNT with a diameter of 18 nm, which is grown by chemical vapor deposition to connect opposing titanium nitride (TiN) electrodes, is able to carry an electrical power up to 0.6 mW before breaking down under vacuum, with a corresponding maximum current density up to 8 × 10(7) A cm(-2) (compared to 0.16 mW and 2 × 10(7) A cm(-2) in air). Decoration with electrochemically deposited Ni particles allows protection of the CNT interconnect against oxidation and improvement of the heat release through the surrounding environment. A CNT decorated with Ni particles is able to carry an increased electrical power of about 1.5 mW before breaking down under vacuum, with a corresponding maximum current density as high as 1.2 × 10(8) A cm(-2). The Joule heating produced along the current carrying CNT interconnect is able to melt the Ni particles and promotes the formation of titanium carbon nitride which improves the electrical contact between the CNT and the TiN electrodes.
我们研究了在空气中和高真空条件下(10(-5) mbar)焦耳加热导致的碳纳米管(CNT)互连击穿。通过化学气相沉积生长的直径为 18nm 的 CNT 能够在真空下断裂之前承载高达 0.6mW 的电功率,相应的最大电流密度高达 8×10(7)A cm(-2)(相比之下,空气中为 0.16mW 和 2×10(7)A cm(-2))。用电化学沉积的 Ni 颗粒进行修饰可以保护 CNT 互连免受氧化,并通过周围环境改善热释放。用 Ni 颗粒修饰的 CNT 能够在真空下断裂之前承载约 1.5mW 的增加电功率,相应的最大电流密度高达 1.2×10(8)A cm(-2)。沿载流 CNT 互连产生的焦耳加热能够熔化 Ni 颗粒,并促进形成钛碳氮化物,从而改善 CNT 和 TiN 电极之间的电接触。