Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer Center, 1901 East Rd., Houston, Texas, USA.
J Chem Inf Model. 2011 Nov 28;51(11):2948-60. doi: 10.1021/ci200271d. Epub 2011 Oct 13.
Blockade of human ether-à-go-go related gene (hERG) channel prolongs the duration of the cardiac action potential and is a common reason for drug failure in preclinical safety trials. Therefore, it is of great importance to develop robust in silico tools to predict potential hERG blockers in the early stages of drug discovery and development. Herein we described comprehensive approaches to assess the discrimination of hERG-active and -inactive compounds by combining quantitative structure-activity relationship (QSAR) modeling, pharmacophore analysis, and molecular docking. Our consensus models demonstrated high-predictive capacity and improved enrichment and could correctly classify 91.8% of 147 hERG blockers from 351 inactives. To further enhance our modeling effort, hERG homology models were constructed, and molecular docking studies were conducted, resulting in high correlations (R² = 0.81) between predicted and experimental pIC₅₀s. We expect our unique models can be applied to efficient screening for hERG blockades, and our extensive understanding of the hERG-inhibitor interactions will facilitate the rational design of drugs devoid of hERG channel activity and hence with reduced cardiac toxicities.
阻断人 ether-à-go-go 相关基因 (hERG) 通道会延长心脏动作电位的持续时间,这是临床前安全试验中药物失败的常见原因。因此,开发强大的计算工具来预测药物发现和开发早期潜在的 hERG 阻滞剂非常重要。在此,我们描述了综合方法,通过结合定量构效关系 (QSAR) 建模、药效团分析和分子对接来评估 hERG 活性和非活性化合物的区分能力。我们的共识模型表现出了很高的预测能力,并且提高了富集度,可以正确地将 147 种 hERG 阻滞剂中的 91.8%从 351 种非活性化合物中分类出来。为了进一步增强我们的建模工作,构建了 hERG 同源模型,并进行了分子对接研究,预测的和实验的 pIC₅₀之间具有很高的相关性 (R² = 0.81)。我们期望我们独特的模型可以应用于高效筛选 hERG 阻滞,并且我们对 hERG 抑制剂相互作用的广泛理解将有助于合理设计没有 hERG 通道活性的药物,从而降低心脏毒性。