Suppr超能文献

通过合成纳米孔的传输建模

Modeling Transport Through Synthetic Nanopores.

作者信息

Aksimentiev Aleksei, Brunner Robert K, Cruz-Chú Eduardo, Comer Jeffrey, Schulten Klaus

机构信息

University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.

出版信息

IEEE Nanotechnol Mag. 2009 Mar;3(1):20-28. doi: 10.1109/MNANO.2008.931112.

Abstract

Nanopores in thin synthetic membranes have emerged as convenient tools for high-throughput single-molecule manipulation and analysis. Because of their small sizes and their ability to selectively transport solutes through otherwise impermeable membranes, nanopores have numerous potential applications in nanobiotechnology. For most applications, properties of the nanopore systems have to be characterize at the atomic level, which is currently beyond the limit of experimental methods. Molecular dynamics (MD) simulations can provide the desired information, however several technical challenges have to be met before this method can be applied to synthetic nanopore systems. Here, we highlight our recent work on modeling synthetic nanopores of the most common types. First, we describe a novel graphical tool for setting up all-atom systems incorporating inorganic materials and biomolecules. Next, we illustrate the application of the MD method for silica, silicon nitride, and polyethylene terephthalate nanopores. Following that, we describe a method for modeling synthetic surfaces using a bias potential. Future directions for tool development and nanopore modeling are briefly discussed at the end of this article.

摘要

薄合成膜中的纳米孔已成为高通量单分子操纵和分析的便捷工具。由于其尺寸小且能够选择性地将溶质运输穿过原本不可渗透的膜,纳米孔在纳米生物技术中有众多潜在应用。对于大多数应用而言,纳米孔系统的特性必须在原子水平上进行表征,而这目前超出了实验方法的极限。分子动力学(MD)模拟可以提供所需信息,然而在将此方法应用于合成纳米孔系统之前,必须克服几个技术挑战。在此,我们重点介绍我们最近对最常见类型的合成纳米孔进行建模的工作。首先,我们描述一种用于建立包含无机材料和生物分子的全原子系统的新型图形工具。接下来,我们说明MD方法在二氧化硅、氮化硅和聚对苯二甲酸乙二酯纳米孔中的应用。随后,我们描述一种使用偏置势对合成表面进行建模的方法。本文结尾简要讨论了工具开发和纳米孔建模的未来方向。

相似文献

1
Modeling Transport Through Synthetic Nanopores.通过合成纳米孔的传输建模
IEEE Nanotechnol Mag. 2009 Mar;3(1):20-28. doi: 10.1109/MNANO.2008.931112.
5
Functionally Active Synthetic α-Helical Pores.具有功能活性的合成 α-螺旋孔道。
Acc Chem Res. 2024 Jul 2;57(13):1790-1802. doi: 10.1021/acs.accounts.4c00101. Epub 2024 Jun 14.
9
Modeling thermophoretic effects in solid-state nanopores.固态纳米孔中热泳效应的建模
J Comput Electron. 2014 Dec 1;13(4):826-838. doi: 10.1007/s10825-014-0594-8.

引用本文的文献

1
Fluids and Electrolytes under Confinement in Single-Digit Nanopores.受限于个位数纳米孔中的流体和电解质。
Chem Rev. 2023 Mar 22;123(6):2737-2831. doi: 10.1021/acs.chemrev.2c00155. Epub 2023 Mar 10.
7
Water-Compression Gating of Nanopore Transport.水压缩门控纳米孔传输。
Phys Rev Lett. 2018 Jun 29;120(26):268101. doi: 10.1103/PhysRevLett.120.268101.
8
Modulation of Molecular Flux Using a Graphene Nanopore Capacitor.利用石墨烯纳米孔电容器调节分子通量。
J Phys Chem B. 2017 Apr 20;121(15):3724-3733. doi: 10.1021/acs.jpcb.6b10574. Epub 2017 Jan 17.
9
Graphene Nanopores for Protein Sequencing.用于蛋白质测序的石墨烯纳米孔
Adv Funct Mater. 2016 Jul 19;26(27):4830-4838. doi: 10.1002/adfm.201601272. Epub 2016 Jun 9.

本文引用的文献

2
Ionic Current Rectification Through Silica Nanopores.通过二氧化硅纳米孔的离子电流整流
J Phys Chem C Nanomater Interfaces. 2009 Feb 1;113(5):1850. doi: 10.1021/jp804724p.
4
Nanoprecipitation-assisted ion current oscillations.纳米沉淀辅助离子电流振荡
Nat Nanotechnol. 2008 Jan;3(1):51-7. doi: 10.1038/nnano.2007.420. Epub 2007 Dec 23.
5
Device physics: will fluidic electronics take off?器件物理:流体电子学能否腾飞?
Nat Nanotechnol. 2007 May;2(5):268-70. doi: 10.1038/nnano.2007.116.
7
Stretching and unzipping nucleic acid hairpins using a synthetic nanopore.利用合成纳米孔拉伸和解开核酸发夹结构
Nucleic Acids Res. 2008 Mar;36(5):1532-41. doi: 10.1093/nar/gkm1017. Epub 2008 Jan 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验