Suppr超能文献

血流动力学变异性对 fMRI 格兰杰因果分析的影响。

Effect of hemodynamic variability on Granger causality analysis of fMRI.

机构信息

Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA.

出版信息

Neuroimage. 2010 Sep;52(3):884-96. doi: 10.1016/j.neuroimage.2009.11.060. Epub 2009 Dec 11.

Abstract

In this work, we investigated the effect of the regional variability of the hemodynamic response on the sensitivity of Granger causality (GC) analysis of functional magnetic resonance imaging (fMRI) data to neuronal causal influences. We simulated fMRI data by convolving a standard canonical hemodynamic response function (HRF) with local field potentials (LFPs) acquired from the macaque cortex and manipulated the causal influence and neuronal delays between the LFPs, the hemodynamic delays between the HRFs, the signal-to-noise ratio (SNR), and the sampling period (TR) to assess the effect of each of these factors on the detectability of the neuronal delays from GC analysis of fMRI. In our first bivariate implementation, we assumed the worst-case scenario of the hemodynamic delay being at the empirical upper limit of its normal physiological range and opposing the direction of neuronal delay. We found that, in the absence of HRF confounds, even tens of milliseconds of neuronal delays can be inferred from fMRI. However, in the presence of HRF delays which opposed neuronal delays, the minimum detectable neuronal delay was hundreds of milliseconds. In our second multivariate simulation, we mimicked the real situation more closely by using a multivariate network of four time series and assumed the hemodynamic and neuronal delays to be unknown and drawn from a uniform random distribution. The resulting accuracy of detecting the correct multivariate network from fMRI was well above chance and was up to 90% with faster sampling. Generically, under all conditions, faster sampling and low measurement noise improved the sensitivity of GC analysis of fMRI data to neuronal causality.

摘要

在这项工作中,我们研究了血流动力学响应的区域变异性对功能磁共振成像 (fMRI) 数据格兰杰因果关系 (GC) 分析对神经元因果影响的敏感性的影响。我们通过将标准规范的血流动力学响应函数 (HRF) 与从猕猴皮层获得的局部场电位 (LFP) 卷积来模拟 fMRI 数据,并操纵因果影响和 LFP 之间的神经元延迟、HRF 之间的血流动力学延迟、信噪比 (SNR) 和采样周期 (TR),以评估这些因素中的每一个对从 fMRI 的 GC 分析中检测神经元延迟的可检测性的影响。在我们的第一个二元实现中,我们假设了血流动力学延迟处于其正常生理范围的经验上限且与神经元延迟相反的最坏情况。我们发现,在不存在 HRF 混淆的情况下,即使是数十毫秒的神经元延迟也可以从 fMRI 中推断出来。然而,在存在与神经元延迟相反的 HRF 延迟的情况下,最小可检测的神经元延迟是数百毫秒。在我们的第二个多元模拟中,我们通过使用四个时间序列的多元网络更紧密地模拟了实际情况,并假设血流动力学和神经元延迟是未知的,并且来自均匀随机分布。从 fMRI 中正确检测出正确的多元网络的准确性大大超过了机会,并且在更快的采样时高达 90%。一般来说,在所有条件下,更快的采样和低测量噪声提高了 fMRI 数据对神经元因果关系的 GC 分析的敏感性。

相似文献

1
7
Measuring relative timings of brain activities using fMRI.使用功能磁共振成像测量大脑活动的相对时间。
Neuroimage. 2013 Feb 1;66:436-48. doi: 10.1016/j.neuroimage.2012.10.052. Epub 2012 Oct 27.

引用本文的文献

本文引用的文献

6
Mitigating the effects of measurement noise on Granger causality.减轻测量噪声对格兰杰因果关系的影响。
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Mar;75(3 Pt 1):031123. doi: 10.1103/PhysRevE.75.031123. Epub 2007 Mar 29.
10
Granger causality and information flow in multivariate processes.多元过程中的格兰杰因果关系与信息流。
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 1):050902. doi: 10.1103/PhysRevE.70.050902. Epub 2004 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验