Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129.
Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129.
J Biol Chem. 2011 Dec 2;286(48):41312-41322. doi: 10.1074/jbc.M111.290973. Epub 2011 Oct 7.
The rotary nanomotor ATP synthase is a central player in the bioenergetics of most organisms. Yet the role of ATP synthase in malaria parasites has remained unclear, as blood stages of Plasmodium falciparum appear to derive ATP largely through glycolysis. Also, genes for essential subunits of the F(O) sector of the complex could not be detected in the parasite genomes. Here, we have used molecular genetic and immunological tools to investigate the localization, complex formation, and functional significance of predicted ATP synthase subunits in P. falciparum. We generated transgenic P. falciparum lines expressing seven epitope-tagged canonical ATP synthase subunits, revealing localization of all but one of the subunits to the mitochondrion. Blue native gel electrophoresis of P. falciparum mitochondrial membranes suggested the molecular mass of the ATP synthase complex to be greater than 1 million daltons. This size is consistent with the complex being assembled as a dimer in a manner similar to the complexes observed in other eukaryotic organisms. This observation also suggests the presence of previously unknown subunits in addition to the canonical subunits in P. falciparum ATP synthase complex. Our attempts to disrupt genes encoding β and γ subunits were unsuccessful, suggesting an essential role played by the ATP synthase complex in blood stages of P. falciparum. These studies suggest that, despite some unconventional features and its minimal contribution to ATP synthesis, P. falciparum ATP synthase is localized to the parasite mitochondrion, assembled as a large dimeric complex, and is likely essential for parasite survival.
旋转纳米马达 ATP 合酶是大多数生物体生物能量学的核心参与者。然而,ATP 合酶在疟原虫中的作用仍然不清楚,因为恶性疟原虫的血阶段似乎主要通过糖酵解来产生 ATP。此外,在寄生虫基因组中也无法检测到该复合物 F(O) 部分的必需亚基基因。在这里,我们使用分子遗传学和免疫学工具来研究预测的疟原虫 ATP 合酶亚基在 Pf 中的定位、复合物形成和功能意义。我们生成了表达七个表位标记的经典 ATP 合酶亚基的转基因 Pf 系,揭示了除一个亚基外的所有亚基都定位于线粒体。Pf 线粒体膜的蓝色非变性凝胶电泳表明 ATP 合酶复合物的分子量大于 100 万道尔顿。这个大小与复合物以类似于在其他真核生物中观察到的复合物的方式组装成双聚体一致。这一观察结果还表明,Pf ATP 合酶复合物除了经典亚基之外,还存在以前未知的亚基。我们试图破坏编码β和γ亚基的基因的尝试都没有成功,这表明 ATP 合酶复合物在 Pf 的血阶段中起着至关重要的作用。这些研究表明,尽管 Pf ATP 合酶具有一些非传统的特征及其对 ATP 合成的最小贡献,但它被定位到寄生虫的线粒体中,组装成一个大型二聚体复合物,并且可能对寄生虫的生存至关重要。