Suppr超能文献

靶向蛋白质组学方法正在弥合蛋白质组学和假设驱动的蛋白质分析方法之间的差距。

Targeted protein-omic methods are bridging the gap between proteomic and hypothesis-driven protein analysis approaches.

机构信息

The Ben May Department for Cancer Research, and The Institute for Genomics & Systems Biology, The University of Chicago, Chicago, IL 60637, USA.

出版信息

Expert Rev Proteomics. 2011 Oct;8(5):565-75. doi: 10.1586/epr.11.49.

Abstract

While proteomic methods have illuminated many areas of biological protein space, many fundamental questions remain with regard to systems-level relationships between mRNAs, proteins and cell behaviors. While mass spectrometric methods offer a panoramic picture of the relative expression and modification of large numbers of proteins, they are neither optimal for the analysis of predefined targets across large numbers of samples nor for assessing differences in proteins between individual cells or cell compartments. Conversely, traditional antibody-based methods are effective at sensitively analyzing small numbers of proteins across small numbers of conditions, and can be used to analyze relative differences in protein abundance and modification between cells and cell compartments. However, traditional antibody-based approaches are not optimal for analyzing large numbers of protein abundances and modifications across many samples. In this article, we will review recent advances in methodologies and philosophies behind several microarray-based, intermediate-level, 'protein-omic' methods, including a focus on reverse-phase lysate arrays and micro-western arrays, which have been helpful for bridging gaps between large- and small-scale protein analysis approaches and have provided insight into the roles that protein systems play in several biological processes.

摘要

虽然蛋白质组学方法已经阐明了生物蛋白质空间的许多领域,但关于 mRNA、蛋白质和细胞行为之间的系统水平关系仍有许多基本问题。虽然质谱方法提供了大量蛋白质相对表达和修饰的全景图,但它们既不适合分析大量样本中预定义的靶标,也不适合评估单个细胞或细胞区室之间蛋白质的差异。相反,传统的基于抗体的方法在分析少数条件下的少数蛋白质方面非常有效,并且可用于分析细胞和细胞区室之间蛋白质丰度和修饰的相对差异。然而,传统的基于抗体的方法并不适合分析许多样本中大量蛋白质的丰度和修饰。在本文中,我们将回顾几种基于微阵列的、中等水平的“蛋白质组学”方法背后的方法学和哲学的最新进展,包括重点介绍反相裂解物阵列和微西方阵列,这些方法有助于弥合大规模和小规模蛋白质分析方法之间的差距,并深入了解蛋白质系统在几个生物学过程中所起的作用。

相似文献

5
Global and targeted quantitative proteomics for biomarker discovery.用于生物标志物发现的全局和靶向定量蛋白质组学。
J Chromatogr B Analyt Technol Biomed Life Sci. 2007 Feb 15;847(1):3-11. doi: 10.1016/j.jchromb.2006.09.004. Epub 2006 Oct 4.
8
Advances in proteomic workflows for systems biology.用于系统生物学的蛋白质组学工作流程的进展。
Curr Opin Biotechnol. 2007 Aug;18(4):378-84. doi: 10.1016/j.copbio.2007.07.005. Epub 2007 Aug 14.
10
Protein microarrays for genome-wide posttranslational modification analysis.蛋白质微阵列用于全基因组翻译后修饰分析。
Wiley Interdiscip Rev Syst Biol Med. 2011 May-Jun;3(3):347-56. doi: 10.1002/wsbm.120. Epub 2010 Sep 23.

引用本文的文献

9
The application of modular protein domains in proteomics.蛋白质组学中模块化蛋白结构域的应用。
FEBS Lett. 2012 Aug 14;586(17):2586-96. doi: 10.1016/j.febslet.2012.04.019. Epub 2012 Apr 21.

本文引用的文献

1
Comparative analysis of proteome and transcriptome variation in mouse.比较分析小鼠蛋白质组和转录组的变化。
PLoS Genet. 2011 Jun;7(6):e1001393. doi: 10.1371/journal.pgen.1001393. Epub 2011 Jun 9.
3
Comprehensive proteomics.全面蛋白质组学。
Curr Opin Biotechnol. 2011 Feb;22(1):3-8. doi: 10.1016/j.copbio.2010.09.002. Epub 2010 Oct 1.
4
Sequential multiplex analyte capturing for phosphoprotein profiling.顺序多重分析物捕获用于磷酸化蛋白质谱分析。
Mol Cell Proteomics. 2010 Nov;9(11):2474-81. doi: 10.1074/mcp.M110.002709. Epub 2010 Aug 3.
5
Cell signaling by receptor tyrosine kinases.受体酪氨酸激酶的细胞信号转导。
Cell. 2010 Jun 25;141(7):1117-34. doi: 10.1016/j.cell.2010.06.011.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验