Suppr超能文献

靶向蛋白质组学方法正在弥合蛋白质组学和假设驱动的蛋白质分析方法之间的差距。

Targeted protein-omic methods are bridging the gap between proteomic and hypothesis-driven protein analysis approaches.

机构信息

The Ben May Department for Cancer Research, and The Institute for Genomics & Systems Biology, The University of Chicago, Chicago, IL 60637, USA.

出版信息

Expert Rev Proteomics. 2011 Oct;8(5):565-75. doi: 10.1586/epr.11.49.

Abstract

While proteomic methods have illuminated many areas of biological protein space, many fundamental questions remain with regard to systems-level relationships between mRNAs, proteins and cell behaviors. While mass spectrometric methods offer a panoramic picture of the relative expression and modification of large numbers of proteins, they are neither optimal for the analysis of predefined targets across large numbers of samples nor for assessing differences in proteins between individual cells or cell compartments. Conversely, traditional antibody-based methods are effective at sensitively analyzing small numbers of proteins across small numbers of conditions, and can be used to analyze relative differences in protein abundance and modification between cells and cell compartments. However, traditional antibody-based approaches are not optimal for analyzing large numbers of protein abundances and modifications across many samples. In this article, we will review recent advances in methodologies and philosophies behind several microarray-based, intermediate-level, 'protein-omic' methods, including a focus on reverse-phase lysate arrays and micro-western arrays, which have been helpful for bridging gaps between large- and small-scale protein analysis approaches and have provided insight into the roles that protein systems play in several biological processes.

摘要

虽然蛋白质组学方法已经阐明了生物蛋白质空间的许多领域,但关于 mRNA、蛋白质和细胞行为之间的系统水平关系仍有许多基本问题。虽然质谱方法提供了大量蛋白质相对表达和修饰的全景图,但它们既不适合分析大量样本中预定义的靶标,也不适合评估单个细胞或细胞区室之间蛋白质的差异。相反,传统的基于抗体的方法在分析少数条件下的少数蛋白质方面非常有效,并且可用于分析细胞和细胞区室之间蛋白质丰度和修饰的相对差异。然而,传统的基于抗体的方法并不适合分析许多样本中大量蛋白质的丰度和修饰。在本文中,我们将回顾几种基于微阵列的、中等水平的“蛋白质组学”方法背后的方法学和哲学的最新进展,包括重点介绍反相裂解物阵列和微西方阵列,这些方法有助于弥合大规模和小规模蛋白质分析方法之间的差距,并深入了解蛋白质系统在几个生物学过程中所起的作用。

相似文献

3
Microwestern Arrays for Systems-Level Analysis of SH2 Domain-Containing Proteins.
Methods Mol Biol. 2017;1555:453-473. doi: 10.1007/978-1-4939-6762-9_27.
5
Global and targeted quantitative proteomics for biomarker discovery.
J Chromatogr B Analyt Technol Biomed Life Sci. 2007 Feb 15;847(1):3-11. doi: 10.1016/j.jchromb.2006.09.004. Epub 2006 Oct 4.
6
Application of targeted mass spectrometry in bottom-up proteomics for systems biology research.
J Proteomics. 2018 Oct 30;189:75-90. doi: 10.1016/j.jprot.2018.02.008. Epub 2018 Feb 13.
7
Reproducible quantitative proteotype data matrices for systems biology.
Mol Biol Cell. 2015 Nov 5;26(22):3926-31. doi: 10.1091/mbc.E15-07-0507.
8
Advances in proteomic workflows for systems biology.
Curr Opin Biotechnol. 2007 Aug;18(4):378-84. doi: 10.1016/j.copbio.2007.07.005. Epub 2007 Aug 14.
9
Integrating gene and protein expression data: pattern analysis and profile mining.
Methods. 2005 Mar;35(3):303-14. doi: 10.1016/j.ymeth.2004.08.021. Epub 2005 Jan 12.
10
Protein microarrays for genome-wide posttranslational modification analysis.
Wiley Interdiscip Rev Syst Biol Med. 2011 May-Jun;3(3):347-56. doi: 10.1002/wsbm.120. Epub 2010 Sep 23.

引用本文的文献

1
Proteomes Are of Proteoforms: Embracing the Complexity.
Proteomes. 2021 Aug 31;9(3):38. doi: 10.3390/proteomes9030038.
5
Identification and validation of genetic variants that influence transcription factor and cell signaling protein levels.
Am J Hum Genet. 2014 Aug 7;95(2):194-208. doi: 10.1016/j.ajhg.2014.07.005. Epub 2014 Jul 31.
6
Analytical challenges translating mass spectrometry-based phosphoproteomics from discovery to clinical applications.
Electrophoresis. 2014 Dec;35(24):3430-40. doi: 10.1002/elps.201400153. Epub 2014 Jul 10.
7
Protein quantitative trait loci identify novel candidates modulating cellular response to chemotherapy.
PLoS Genet. 2014 Apr 3;10(4):e1004192. doi: 10.1371/journal.pgen.1004192. eCollection 2014 Apr.
8
Cholestane-3β, 5α, 6β-triol suppresses proliferation, migration, and invasion of human prostate cancer cells.
PLoS One. 2013 Jun 13;8(6):e65734. doi: 10.1371/journal.pone.0065734. Print 2013.
9
The application of modular protein domains in proteomics.
FEBS Lett. 2012 Aug 14;586(17):2586-96. doi: 10.1016/j.febslet.2012.04.019. Epub 2012 Apr 21.

本文引用的文献

1
Comparative analysis of proteome and transcriptome variation in mouse.
PLoS Genet. 2011 Jun;7(6):e1001393. doi: 10.1371/journal.pgen.1001393. Epub 2011 Jun 9.
2
Lysate microarrays enable high-throughput, quantitative investigations of cellular signaling.
Mol Cell Proteomics. 2011 Apr;10(4):M110.005363. doi: 10.1074/mcp.M110.005363. Epub 2011 Feb 4.
3
Comprehensive proteomics.
Curr Opin Biotechnol. 2011 Feb;22(1):3-8. doi: 10.1016/j.copbio.2010.09.002. Epub 2010 Oct 1.
4
Sequential multiplex analyte capturing for phosphoprotein profiling.
Mol Cell Proteomics. 2010 Nov;9(11):2474-81. doi: 10.1074/mcp.M110.002709. Epub 2010 Aug 3.
5
Cell signaling by receptor tyrosine kinases.
Cell. 2010 Jun 25;141(7):1117-34. doi: 10.1016/j.cell.2010.06.011.
6
Ligand-specific c-Fos expression emerges from the spatiotemporal control of ErbB network dynamics.
Cell. 2010 May 28;141(5):884-96. doi: 10.1016/j.cell.2010.03.054. Epub 2010 May 20.
7
A global protein kinase and phosphatase interaction network in yeast.
Science. 2010 May 21;328(5981):1043-6. doi: 10.1126/science.1176495.
10
Cytokine-associated drug toxicity in human hepatocytes is associated with signaling network dysregulation.
Mol Biosyst. 2010 Jul;6(7):1195-206. doi: 10.1039/b926287c. Epub 2010 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验