Department of Chemistry and Biochemistry, Center for Theoretical Biological Physics and Howard Hughes Medical Institute, University of California-San Diego, La Jolla, California, USA.
PLoS Biol. 2011 Nov;9(11):e1001207. doi: 10.1371/journal.pbio.1001207. Epub 2011 Nov 29.
The minimum motor domain of kinesin-1 is a single head. Recent evidence suggests that such minimal motor domains generate force by a biased binding mechanism, in which they preferentially select binding sites on the microtubule that lie ahead in the progress direction of the motor. A specific molecular mechanism for biased binding has, however, so far been lacking. Here we use atomistic Brownian dynamics simulations combined with experimental mutagenesis to show that incoming kinesin heads undergo electrostatically guided diffusion-to-capture by microtubules, and that this produces directionally biased binding. Kinesin-1 heads are initially rotated by the electrostatic field so that their tubulin-binding sites face inwards, and then steered towards a plus-endwards binding site. In tethered kinesin dimers, this bias is amplified. A 3-residue sequence (RAK) in kinesin helix alpha-6 is predicted to be important for electrostatic guidance. Real-world mutagenesis of this sequence powerfully influences kinesin-driven microtubule sliding, with one mutant producing a 5-fold acceleration over wild type. We conclude that electrostatic interactions play an important role in the kinesin stepping mechanism, by biasing the diffusional association of kinesin with microtubules.
驱动蛋白-1 的最小马达结构域是一个单体。最近的证据表明,这种最小的马达结构域通过一种偏向结合的机制产生力,其中它们优先选择沿着马达前进方向的微管上的结合位点。然而,到目前为止,这种偏向结合的特定分子机制尚不清楚。在这里,我们使用原子布朗动力学模拟结合实验诱变来表明,进入的驱动蛋白头部经历静电引导的扩散到微管的捕获,并且这产生了定向偏向的结合。驱动蛋白-1 头部最初被电场旋转,使得它们的微管结合位点向内,然后被引导到向正极的结合位点。在系留的驱动蛋白二聚体中,这种偏差被放大。驱动蛋白螺旋 alpha-6 中的 3 个残基序列(RAK)被预测对静电导向很重要。该序列的实际诱变强烈影响驱动蛋白驱动的微管滑动,其中一个突变体产生的速度比野生型快 5 倍。我们得出结论,静电相互作用通过偏向驱动蛋白与微管的扩散缔合,在驱动蛋白的步进机制中发挥重要作用。