Suppr超能文献

光学相干断层扫描自动分析色素上皮脱离。

Automated characterization of pigment epithelial detachment by optical coherence tomography.

机构信息

Doheny Image Reading Center, Doheny Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA.

出版信息

Invest Ophthalmol Vis Sci. 2012 Jan 20;53(1):164-70. doi: 10.1167/iovs.11-8188.

Abstract

PURPOSE

To assess the accuracy of automated classification of pigment epithelial detachments (PED) by using a software algorithm applied to spectral-domain optical coherence tomography (SD-OCT) scans.

METHODS

HD-OCT (Cirrus; Carl Zeiss Meditec, Dublin, CA) volume scans (512 × 128) were retrospectively collected from 46 eyes of 33 patients with evidence of PED in the setting of age-related macular degeneration (AMD, n = 28) or central serous chorioretinopathy (CSCR, n = 5). In these eyes, 168 PEDs were automatically detected with a system-associated tool (Cirrus HD-OCT RPE Elevation Analysis; Carl Zeiss Meditec). Two independent, certified Doheny Image Reading Center (DIRC) OCT graders classified these PEDs into three categories--serous, drusenoid, or fibrovascular--via inspection of the B-scans. Manual classification results served as the gold standard for comparisons with automated classification. For automated classification, interindividual variation in intensities was normalized in all images. Individual A-scans within the detected PEDs were then automatically classified into one of three categories based on the mean internal intensity and the standard deviation of the internal intensity: mean intensity <30 (serous type); mean intensity ≥30 but <60 or mean intensity ≥30 and SD ≥30 (fibrovascular type); or mean intensity ≥60 and SD < 30 (drusenoid type). Individual PEDs were then automatically classified into the same three categories based on the predominant type of A-scan within the PED. For mixed PEDs (many A-scans of each type), a risk index for neovascularization was computed based on the percentage of fibrovascular A-scans. In addition, a confidence index was computed for each PED based on its mathematical distance from the PED category boundaries.

RESULTS

Among the 168 PEDs, the DIRC graders classified 16 as serous, 88 as fibrovascular, and 64 as drusenoid PEDs. The automated algorithm classified 14 as serous, 96 as fibrovascular, and 58 as drusenoid PEDs. The sensitivity and specificity values for automated classification according to type of PED were 88% and 100% for serous, 76% and 64% for fibrovascular, and 58% and 81% for drusenoid, respectively.

CONCLUSIONS

Automated classification of PEDs using internal reflectivity characteristics appears to be sensitive for detecting serous and fibrovascular PEDs. Automated classification and quantification of PEDs may be a useful tool in future studies for stratifying PEDs according to risk and possibly predicting the risk of advanced AMD.

摘要

目的

使用应用于谱域光相干断层扫描(SD-OCT)扫描的软件算法评估色素上皮脱离(PED)的自动分类的准确性。

方法

回顾性收集了 33 名患者 46 只眼的高清 OCT(Cirrus;Carl Zeiss Meditec,都柏林,CA)容积扫描(512×128),这些患者的眼底均有年龄相关性黄斑变性(AMD,n=28)或中心性浆液性脉络膜视网膜病变(CSCR,n=5)相关的 PED 证据。在这些眼中,使用系统相关工具(Cirrus HD-OCT RPE 抬高分析;Carl Zeiss Meditec)自动检测到 168 个 PED。两名独立的、经过认证的 Doheny Image Reading Center(DIRC)OCT 分级员通过检查 B 扫描将这些 PED 分为三类——浆液性、玻璃膜疣样或纤维血管性。手动分类结果作为与自动分类进行比较的金标准。对于自动分类,所有图像中的个体强度变化均进行了归一化。然后,根据内部强度的平均值和内部强度的标准偏差,自动将检测到的 PED 中的各个 A 扫描分类为以下三种类型之一:平均强度<30(浆液型);平均强度≥30 但<60 或平均强度≥30 且 SD≥30(纤维血管型);或平均强度≥60 且 SD<30(玻璃膜疣样型)。然后,根据 PED 内主要类型的 A 扫描,将单个 PED 自动分类为相同的三种类型。对于混合 PED(每种类型的 A 扫描很多),根据纤维血管 A 扫描的百分比计算新生血管风险指数。此外,还根据 PED 与 PED 类别边界的数学距离为每个 PED 计算置信指数。

结果

在 168 个 PED 中,DIRC 分级员将 16 个分类为浆液性,88 个分类为纤维血管性,64 个分类为玻璃膜疣样 PED。自动算法将 14 个分类为浆液性,96 个分类为纤维血管性,58 个分类为玻璃膜疣样 PED。根据 PED 类型,自动分类的灵敏度和特异性值分别为 88%和 100%(浆液性)、76%和 64%(纤维血管性)以及 58%和 81%(玻璃膜疣样型)。

结论

使用内部反射率特征对 PED 进行自动分类似乎对检测浆液性和纤维血管性 PED 具有敏感性。PED 的自动分类和定量分析可能是未来研究中根据风险分层 PED 并可能预测晚期 AMD 风险的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验